ASCENSION STAGED MASTER DRAINAGE PLAN

Prepared for:

Prepared by:

LCD Consulting Engineering Ltd. stormwater and water resources management

> October 2022 Project LGN2201

TABLE OF CONTENTS

LIST OF	TABLES	IV
LIST OF	FIGURES	V
1.0 INT	RODUCTION	1
1.1	General	1
1.2	STUDY AREA	
1.3	TOPOGRAPHY	
1.4	SCOPE OF ANALYSIS	
2.0 PR	E-DEVELOPMENT HYDROLOGIC ASSESSMENT	3
2.1	Methodology	3
2.1	DATA SOURCES	
2.2	PRE-DEVELOPMENT STUDY AREA	
2.3	DRAINAGE PATTERNS	
2.4	CLIMATE DATA AND DESIGN STORM	
2.5	MODEL DEVELOPMENT	
2.0	PCSWMM PEAK RUNOFF RATE	
2.7	MODEL RESULTS	
	-development Peak Runoff Rate	
Pie	-development Peak Runon Rate	
3.0 PR	OPOSED DRAINAGE STRATEGIES AND DESIGN CRITERIA	
3.1	Related Reports	7
3.2	Drainage Strategies	7
3.3	GEOTECHNICAL CONSIDERATIONS	7
3.4	DESIGN CHARACTERISTICS FOR THE MAJOR AND MINOR SYSTEMS	8
Min	or System	9
	ior System	
3.5	Source Control Best Management Practices	
3.6	STORMWATER QUALITY ENHANCEMENT	
3.7	BIOPHYSICAL IMPACT ASSESSMENT	
	ST-DEVELOPMENT HYDROLOGIC AND HYDRAULIC ANALYSIS	
	gle Storm Event Analysis htinuous Simulation	
4.1	Computer Model	
4.2	POST-DEVELOPMENT SUBCATCHMENTS	
4.3		
4.4		
4.5		
4.6	STORAGE ROUTING	
4.7	SEDIMENT REMOVAL ANALYSIS.	
4.8	WATER FOR WETLAND TO BE RETAINED	19
5.0 DES	SIGN DETAILS	20
5.1	Pond Layout	
5.2	OUTLET CONTROL STRUCTURE	
5.3	Emergency Overflow	
5.4	FREQUENCY OF PONDING	
		······ ·····

Ascension – Staged Master Drainage Plan Bearspaw, Rocky View County

5.5	POST-DEVELOPMENT PEAK RUNOFF RATE	22
5.6	RUNOFF VOLUME DISCHARGES	23
5.7	WATER BALANCE	
5.8	WATER QUALITY	
5.9	STORM POND SEDIMENT REMOVAL	24
5.10	FOREBAY SIZING	24
6.0 CON	ICLUSIONS AND RECOMMENDATIONS	26
REFERE	NCES	28

APPENDICES

Appendix A	Geotechnical Data

- Appendix B PCSWMM Existing Conditions Analysis
 - Schematic •
 - Input & Report Files

PCSWMM Post-development Analysis Appendix C

- Input Parameters •
- Schematic •
- Input & Report Files •
- Frequency Analysis Appendix D
- Oil/Grit Separator Appendix E

LIST OF TABLES

Table 1 - Land Cover Imperviousness Values	3
Table 2 – Pre-development Sub-Catchment Parameters	4
Table 3 – Sandy Loam Infiltration Parameters	5
Table 4 - Peak Flow Results	6
Table 5 - Topsoil Composition	8
Table 6 – Sandy Loam Infiltration Parameters	8
Table 7 - Permissible Depths and Velocities for Overland Flows	9
Table 8 – Land Use Breakdown & Imperviousness	15
Table 9 – Post-development Sub-Catchment Shape Parameters	16
Table 10 – Existing Wetland Storage Rating Data	17
Table 11 – Proposed Dry Pond - Storage Rating Data	17
Table 12 – Proposed Constructed Wetland - Storage Rating Data	18
Table 13 - Pollutant Build-up Parameters	18
Table 14 - Pollutant Washoff Parameters	18
Table 15 - Settling Velocity Data	18
Table 16 – Dry Pond Characteristics	20
Table 17 – Constructed Wetland Characteristics	21
Table 18 – Frequency of Total Storage Volumes	22
Table 19 - Peak Flow Results	22
Table 20 - Average Annual Runoff Volumes	23
Table 21 – Water Balance	23
Table 22 - Pond Sediment Removal Efficiency	24
Table 23 - West Inlet Forebay Sizing	24
Table 24 – East inlet Forebay Sizing	25

LIST OF FIGURES

Figure 1 - Location Plan	29
Figure 2 - Study Area	30
Figure 3 – Land Use Concept Plan	31
Figure 4 – Pre-development Contours	32
Figure 5 – Pre-Development Sub-Catchments	33
Figure 6 – Regional Storm Plan	34
Figure 7 – Internal Storm Plan	35
Figure 8 – Post-development Catchments	36
Figure 9 – Dry Pond Design	37
Figure 10 – Dry Pond Preliminary Cross-Section	38
Figure 11 – Dry Pond Preliminary Outlet Control Structure	39
Figure 12 – Constructed Wetland Preliminary Design	40
Figure 13 – Constructed Wetland Preliminary Cross-section	41
Figure 14 – Constructed Wetland Preliminary Outlet Control Structure	42
Figure 15 - SWMFs Annual Water Levels	43
Figure 16 - SWMFs Frequency Distribution	44
Figure 17 - Pre vs Post-development Wetland hydroperiods	45

1.0 INTRODUCTION

1.1 General

Highfield Land Management Inc. is currently in the process of developing Ascension, a mixed-use residential development within Rocky View County. LGN Consulting Engineering Ltd. (LGN) was retained to prepare a Staged Master Drainage Plan report (SMDP) for the above-noted development. The SMDP outlines the drainage concept to accommodate the runoff generated by the sub-catchments within the Ascension development and offsite lands flowing through the proposed development. It also provides design information for the associated stormwater management facility (SWMF or Pond).

The following reports have set the guidelines for stormwater management for land development in the Bearspaw area:

- Worley Parsons; Bearspaw Glenbow Master Drainage Plan; June 2010.
- Westhoff Engineering Resources, Inc.; Master Drainage Plan for Watermark at Bearspaw; July 2010.
- Westhoff Engineering Resources, Inc.; Stormwater Pond Report for Watermark Phase 1 Ponds C and D; March 2011.
- Exp Services Inc.; Amendment Watermark Phase 1 Ponds C and D; May 2012.
- ISL Engineering and Land Services, Rocky View County; Glenbow Ranch ASP Master Drainage Plan; January 2017.
- Kerr Wood Leidal Associates Ltd; Haskayne Master Drainage Plan; November 2017.

This SMDP complies with all the criteria set by the above-noted reports. Information on the type, size and performance characteristics of the SWMF is also presented and, in combination with the drainage concept for the area, forms the basis for future development within the study area. As required by Rocky View County and Alberta Environment and Sustainable Resource Development (Alberta ESRD), this analysis evaluates the control of discharge of stormwater runoff and stormwater quality enhancement prior to discharge to the receiving water body.

1.2 Study Area

The study area is located in Rocky View County, immediately west of the City of Calgary, south of Highway 1A. Is bound by Highway 1A on the north, 12 Mile Coulee Road and the Community of Tuscany on the east, Blueridge country residential development on the south and undeveloped lands on the west. The site is located within the E $\frac{1}{2}$ Sec. 19-25-2-W5M and currently is being cultivated.

Figure 1 shows the location of the proposed development relative to Rocky View County and the City of Calgary, **Figure 2** shows the Study Area relative to the existing surrounding communities and **Figure 3** shows the proposed Land Use Concept Plan provided by B&A Studios (**B&A**).

1.3 Topography

The site naturally drains from north to south and towards the natural drainage course at the centre of the site. Elevations range from 1245 m (\pm) in the north to 1182 (\pm) in the south. The natural drainage course enters the site on the north as a low grass swale and exists the site as a steep narrow ravine with slopes ranging from 15 – 25 %; **Figure 4** shows the existing contours and drainage pattern.

1.4 Scope of Analysis

Rocky View County requires an SMDP in support of a land development Concept Plan. The SMDP addresses a component of the area included in a major storm catchment. The SMDP involves a more detailed hydrologic and hydraulic assessment of the storm drainage of a development area, particularly for the definition of SWMFs in terms of layouts and elevations. This information is addressed in concept in the overall Master Drainage Plan for a larger area, and in detail for the smaller component area of the SMDP.

The location, shape and hydraulic characteristics of the SWMF for the Ascension development are defined in this report. The anticipated volume control and water quality enhancement for the SWMF under ultimate development conditions are also assessed. All these must meet Alberta ESRD and Rocky View County requirements.

Activities performed in preparation for this analysis:

- Outline pre-development sub-catchment boundaries.
- Hydrologic model to establish pre-development flows and wetland hydroperiods.
- Establish post-development drainage boundaries and catchment areas draining to each SWMF.
- Hydrologic modelling to estimate the runoff and water quality from the study catchment area utilizing both single and continuous computer simulation modelling.
- Hydraulic modelling to estimate stormwater storage volume required and anticipated operation of the SWMF.
- Estimate anticipated Post-development average annual volume discharge and
- Preparation of draft and final reports.

This analysis is an office study based on data and reports by others. No detailed field survey was undertaken by LGN. The land use distribution and location of the SWMFs have been defined by the Concept Plan provided by B&A (**Figure 3**)

The study addresses overall surface water runoff in the study area to assess the operation of the SWMF presented in this report. No structural or hydrogeological engineering considerations, assessment of subsurface drainage conditions, the underground piped drainage system or the drainage of individual development lots was undertaken by this study.

2.0 Pre-development Hydrologic Assessment

2.1 Methodology

A pre-development analysis of the study area was conducted. The main purpose was to establish the pre-development peak discharge from the Ascension lands into the Blueridge residential development.

The following basic steps were taken in the analysis:

- * Gather and review relevant background data.
- * Review Rocky View County, City of Calgary and Province Guidelines for appropriate modelling parameters.
- * Establish potential overland flow paths.
- * Compile results for appropriate reporting tables and graphs.

2.2 Data Sources

The following key sources of information were used:

- * Topographical data prepared using 2015 LiDAR was utilized to determine sub-catchment boundaries for significant pre-development drainage courses and their surface drainage connections, as well as to estimate sub-catchment slopes, flow lengths, and widths; this information was necessary for hydrologic modelling.
- * Land cover data was determined from site visits.
- * The Green amp infiltration parameters used in the pre-development PCSWMM model were obtained from the Haskayne Master Drainage Plan.

2.3 Pre-development Study Area

The pre-development catchment area is 154.20 ha of land that is mainly being used as agricultural land. Based on contours generated from topographical data, the pre-development study area was divided into 4 sub-catchments; three discharging into the natural drainage course and the fourth one into the existing wetland. The land cover imperviousness values utilized are in the Table below:

Land Cover Type	Percent Imperviousness (%)
Vegetated and/or Cultivated	0
Buildings	100
Gravel Roads	50
Wetlands at HWL	100

Table 1 - Land Cover Imperviousness Values

Figure 5 illustrates the pre-development sub-catchments and **Table 2** lists the model sub-catchments and parameters used in the model.

Model ID - Land Use	Area (ha)	Imperviousness (%)	Length (m)	Width (m)	Slope (%)
A1 - Agricultural	67.83	2	412	1646	5
A2 - Agricultural	35.07	0	311	1128	9
A3 - Agricultural	23.46	0	500	469	10
B – Agricultural*	27.84	4	430	647	9
Total	154.20				

Table 2 – Pre-development Sub-Catchment Parameters

* Catchment to Existing Wetland

The length of each sub-catchment was determined by measuring the longest runoff route before runoff is intercepted by the natural drainage course.

2.4 Drainage Patterns

The Biophysical Impact Assessment (Westhoff, 2017) identified a watercourse within the Project Site. Following is **Section 3.8, Watercourse** out of this report:

"We identify a watercourse within the Project Site (Figure 5). The watercourse bisects the Site flowing from the north and exiting along the southwest boundary. The watercourse is classified as "Transitional" based on field observations of a well-defined, non-vegetated channel and flowing water observed on October 12 and November 1, 2016. In a typical transitional watercourse, the banks and non-vegetated channel are well defined, with channel width greater than 0.4 m to 0.7 m; the channel carries flow year round but may freeze in winter or dry up during a drought year (Alberta Environment and Sustainable Resource Development 2012).

There are two smaller ravines that meet the central watercourse on its northern boundary. No surface water was observed in the ravines during field surveys; however, there are small isolated patches of wetland vegetation in each ravine. No hydric soils were observed associated with these areas. The ravines are classified as ephemeral watercourses based on field observations and review of historical photographs (Alberta Environment and Sustainable Resource Development 2012).

The watercourse and both small ravines have been left mostly undisturbed in all the photographs reviewed. There was historical disturbance of the watercourse between approximately 1977 and 1981. Two dugouts were created along with berms transecting the watercourse and a small culvert was installed in the berm located between the dugouts. Bearspaw Village Road crosses the central watercourse, southwest of the Site; a culvert is present at this crossing."

2.5 Climate Data and Design Storm

Hourly precipitation and temperature data for the period 1960 to 2014 (55 years) for the City of Calgary were utilized for modelling. The data was provided by the City of Calgary, Development Approvals. Continuous simulation over the 55 years of historic climate data for the City of Calgary was utilized in the stormwater models to estimate runoff volume and peak flow targets from pre-development conditions. PC-SWMM utilizes the hourly time step of the existing data; reporting was provided using an hourly time step.

The City of Calgary 1:100yr 24hr synthetic design storm with a Chicago distribution was used for the single event model analysis. The distribution parameters a, b, & c in the City of Calgary Stormwater

Management and Design Manual (2011) are 663.1, 1.87 and 0.712 respectively. The time to peak, r, is set to 0.3.

2.6 Model Development

The PCSWMM model was utilized to assess the hydrological importance of pre-development potential surface drainage connections, determine pre-development flow-duration relationships, and determine the 1:100yr pre-development peak flow rate.

Stormwater runoff calculation parameters used for this study area are based on known site conditions and are consistent with City of Calgary guidelines. A summary of the common input parameters used in each model are:

- Land cover GIS layer for area-weighted imperviousness values for sub-catchment boundaries.
- Green-Ampt Infiltration Parameters used in the pre-development analysis were obtained from the approved Haskayne Master Drainage Plan, November 2017 and listed in **Table 3**.

	Value			Units	
Parameter Subcatchment ID	A1	A2	A3	В	
Suction Head (Ψ)	126	270.53	270.69	213.88	mm
Hydraulic Conductivity (K)	0.99	1	0.99	1.68	mm/hr.
Initial Moisture Deficit (IMD)	21	21	0.25	0.29	%

Table 3 – Sandy Loam Infiltration Parameters

- Depression Storage Parameters: Pervious Surfaces 7.5 mm, Impervious Surfaces 2 mm.
- Manning 'n' Values: Pervious Areas 0.3, Impervious Areas 0.014.

2.7 PCSWMM Peak Runoff Rate

The pre-development peak runoff rate was determined by running a single event analysis with the City of Calgary Chicago Design Storm for the 1:100 year 24-hour storm event.

The natural drainage course was modelled as an irregular channel with two (2) representative crosssections extracted from cross-sections and a profile generated by a field survey. The runoff from subcatchments A1 to A3 was routed through the natural channel. Runoff from sub-catchment B was routed through the existing wetland. See **Appendix B** for the PCSWMM model schematic and output files.

2.8 Model Results

This section describes the key results of the hydrological analysis. The subsections below discuss two primary aspects of the results, namely, drainage courses and overland flow paths.

The results are reflective of the most accurate modelling capabilities readily available from the PC-SWMM modelling software using currently available topography, soil texture, geotechnical, and land cover data for the study area.

Pre-development Peak Runoff Rate

The PC-SWMM model was utilized to obtain the peak runoff rate during a 1:100 year 24-hour single event utilizing a Calgary Chicago Design Storm. The results are tabulated below:

Natural Channel ID	Single Event 24h-100y (m³/s)
OF-3	2.295
OF-W	0.253
TOTAL	2.548

Table 4 - Peak Flow Results

The peak discharge of interest is the discharge from sub-catchment B, the analysis estimates a peak discharge from Area B of 0.253 m3/s.

3.0 PROPOSED DRAINAGE STRATEGIES AND DESIGN CRITERIA

3.1 Related Reports

The following reports are associated with the area:

- Worley Parsons; Bearspaw Glenbow Master Drainage Plan; June 2010.
- Westhoff Engineering Resources, Inc.; Master Drainage Plan for Watermark at Bearspaw; July 2010.
- Westhoff Engineering Resources, Inc.; Stormwater Pond Report for Watermark Phase 1 Ponds C and D; March 2011.
- Exp Services Inc.; Amendment Watermark Phase 1 Ponds C and D; May 2012.
- Exp Services Inc.; Geotechnical Investigation Report; November 2016.
- Westhoff Engineering Resources Inc.; Biophysical Impact Assessment; July 2017.
- Kerr Wood Leidal Associates Ltd; Haskayne Master Drainage Plan; November 2017.
- IBI Group; Morton Development Staged Master Drainage Plan; July 2020.

3.2 Drainage Strategies

The analysis is based on the following assumptions:

- The entire development area will be drained using the Dual Drainage Concept (minor/major system).
- The drainage system is to convey the entire stormwater runoff to the regional SWMFs identified in this report.
- The detailed overland drainage design by others must ensure the safe conveyance through the development of the overland flows generated by the 100-year event.
- Any ponding of stormwater runoff on the streets or individual development lots must be acceptable by the approving authorities.
- Back of lots adjacent to any MR or ER lands must drain as sheet flow to prevent erosion.
- Discharge from the development to be conveyed via existing overland infrastructure in the residential developments of Blueridge and Watermark and then via 12 Mile Coulee Road into the Bow River. This discharge system uses existing outlet BO-1 to discharge into the Bow River.

3.3 Geotechnical Considerations

Exp Engineering Services Inc. completed a Geotechnical Investigation for the Hawkwood Lands (now known as Ascension) and reported that:

"The subsurface soil conditions encountered were generally found to consist of topsoil overlying lacustrine clay and/or clay till atop bedrock."

"Topsoil-like materials were encountered in all the boreholes, with thicknesses between 0.1 m to 0.6 m. The term "topsoil" in this report refers to a surficial soil layer with high organic content, and does not have any implications whatsoever as to the quality or suitability for re-use as a growing medium. The topsoil was generally described as having trace to some silt and sandy. The topsoil thicknesses have been determined at the borehole locations only. These thicknesses may not necessarily be representative across the project site as they may vary significantly between relatively widely spaced borehole locations. Additional shallow test locations would be needed to more accurately assess the topsoil thicknesses." Copy of the geotechnical report is included in **Appendix A**.

A further Grain Size Distribution analysis identified the following topsoil composition:

	BH16-3	BH16-9	BH16-11	BH16-18	BH16-20	MW16-6	Average
Clay	14	11	14	6	6	11	10
Silt	33	29	24	23	17	41	28
Sand	53	60	62	71	77	48	62
Soil Type	Sandy Loam						

Table 5 - Topsoil Composition

The soil infiltration parameters used in the model for the Sandy Loam soil were obtained from the Soil Water Characteristics Chart by the USDA Agricultural Research Service and Table 3-12 of the City of Calgary Stormwater Management and Design Manual (2011). Copy of the USDA chart is attached in **Appendix C**. Infiltration parameters used in the PCSWMM computer model are listed in **Table 67**.

Table 6 – Sanuy Loant Innitiation Parameters						
Parameter	Value	Units				
Hydraulic Conductivity (K)	27.08	mm/hr.				
Suction Head (Ψ)	110	mm				
Porosity Fraction (Φ)	0.396					
Field Capacity Fraction (FC)	0.175					
Wilting Point Fraction (WP)	0.081					
Initial Moisture Deficit (IMD)	24.6	%				

Table 6 – Sandy Loam Infiltration Parameters

3.4 Design characteristics for the Major and Minor Systems

The discharge criterion for the study area has been established by the Bearspaw - Glenbow Master Drainage Plan report and is as follows:

- Maximum Allowable Release Rate to Weed Lake:
 - o 1:100 year 0.99 L/s/ha
- Runoff Volume Control:
 - The majority of rainfall should be retained on site through the use of LID and best management practices (BMP) techniques.
 - The average annual amount of rainfall discharged to the Bow River should not exceed.
 50 mm.

To reduce the runoff volume discharge, the following BMPs are proposed:

- 400 mm of topsoil in all landscaped areas, including public and private sites.
- All roof downspouts to be directed to pervious areas prior to discharging into an impervious area.

• Convey as much is possible runoff from hard surfaces via pervious areas before entering the minor system.

Minor System

The minor system is the underground piping system and must quickly and efficiently remove rainfall runoff below its design capacity. The following are the pertinent design criteria:

- The storm system must be designed as a separate system from the sanitary.
- During the detailed design of the surface drainage system by others it must be ascertained that the 100-year maximum hydraulic grade line in the overall system is acceptable. Surcharge to the surface is strictly prohibited.
- ICDs are required to control flows into the pipe system.
- It is recommended that the minor system be designed for a unit area release rate of 115 L/s/ha for Multi-family and commercial sites and 70 L/s/ha for residential.

Major System

The major stormwater drainage system includes all overland drainage routes (roads, lanes, ditches, swales, etc.). This system is the path for the runoff to follow when the capacity of the minor (piped) system has been exceeded; therefore, it must be designed to convey runoff from extreme rainfall events that exceed the capacity of the minor system. Failure to properly plan and design the major system will most likely result in flooding and damage of both private and public property.

The design and analysis of the overland drainage system must conform to the Alberta ESRD guidelines which have been adopted by most municipalities. Some of the pertinent guidelines are the following:

- The major drainage system must be designed as an overland system and shall be analyzed with respect to the 1:100 year return period event, including the SWMFs.
- The grading of the streets and the layout of the major system shall be designed to provide a continuous escape route. Adjacent properties must be protected from possible flooding by these flows.
- The maximum depth of flow at the curbside gutter should be less than 0.30 m.
- Standing water at low points (traplows) should be less than 0.5 m.
- The velocities and depths of flow for the overland drainage system shall not exceed the values outlined in **Table 7**.

Water Velocity (m/s)	Permissible Depth (m)
0.5	0.80
1.0	0.32
2.0	0.21
3.0	0.09

Table 7 - Permissible Depths and Velocities for Overland Flows

• Spillover elevations should be no higher than 0.5 m above the lowest point in the traplow.

- Where the overland escape route for a traplow is via a public road, the minimum building openings must be 0.3 m higher than the 1:100 year water level in adjacent traplows or the spillover elevation, whichever is higher.
- If the overland escape route is via PUL, MR or utility right-of-way, the lowest opening elevation must be set at 0.5 m above the spill elevation or the 1:100 year water level, whichever is higher.
- If the overland escape route is not along a public road or paved public pathway, a concrete swale will be required.

Figure 6 shows the Regional Storm Plan and Figure 7 shows the preliminary internal storm minor system.

3.5 Source Control Best Management Practices

In the interest of an environmentally sensitive development, there is a range of alternative storm servicing concepts that can be considered in new developments. These concepts require an additional area for stormwater facilities and/or implementation of some of the concepts outlined in The City of Calgary, Water Resources, Stormwater Source Control Practices Handbook (November 2007).

To reduce the runoff volume discharge from the new development, the following BMPs were included in the PCSWMM model:

- Increased topsoil depth 400 mm of topsoil for all landscaped areas in the lots, road pervious areas and MR;
- All roof drainage from single-family houses and garages to be directed to landscaped areas prior to draining to streets or lanes. Items like wide splash pads should be used to ensure that the roof drainage is properly distributed over the landscaped areas, for a sample see the image below.

3.6 Stormwater Quality Enhancement

Alberta ESRD and Rocky View County have a stormwater quality enhancement requirement for all new developments. This requirement is to remove 85% of the sediment washoff from a development area, of particles greater than 50 µm in size prior to discharge. This stormwater quality requirement will be met using forebays and Oil/Grit separators (OGS), more details are provided in **Section 5.8** of this report.

3.7 Biophysical Impact Assessment

A biophysical impact assessment for the development area was prepared by Westhoff Engineering Resources Inc. Following is Westhoff's report Executive Summary:

"Highfield Land Management is proposing The Ascension Lands development in Rocky View County (SW/SE-19-25-2 W5M). Westhoff Engineering Resources Inc. (Westhoff) was retained to prepare a Biophysical Impact Assessment (BIA) for The Ascension Lands. The BIA describes existing environmental conditions, the potential impacts of the development, and mitigation measures to reduce these impacts. The significance of identified impacts is also evaluated along with the potential for cumulative effects. The information presented in the BIA is directly applicable to required provincial referrals and applications under the *Water Act* and *Public Lands Act*.

Existing Conditions

The Project Site is located within the Parkland Natural Region and Foothills Parkland Natural Subregion. The native grassland associated with the Foothills Parkland Natural Subregion is no longer represented within the Site, although patches of native vegetation remain along a central watercourse.

Terrain conditions within the Project Site are variable with rolling uplands, several wetlands and a natural watercourse running through the centre of the Site. The watercourse enters the Site in the north as a low open swale and then develops into a relatively steep narrow ravine as it drains south and west, where it leaves the Site. Slopes are relatively steep (15- 25% or greater) along the southern portion of the watercourse and in two associated ravines on its north boundary. Dunvargan soils consisting of Orthic Black and Rego Black Chernozems are dominant throughout, with Orthic Humic Gleysols found in low lying areas.

A total of four naturally occurring wetlands are identified within the Project Site: two Temporary, one swamp, and one Permanent Shallow Open Water wetland. The central creek is classified as Transitional watercourse and the two smaller associated ravines are classified as ephemeral watercourses. Road construction has impacted Wetland 1, located along the southern boundary, and Wetland 4, located along the central watercourse. Wetlands 2 and 3 appear to be undisturbed.

A range of wildlife species have the potential to occur within the Project Site. We recorded incidental observations of 22 species during field surveys; two are listed provincially as Sensitive. Wildlife are likely to use the central watercourse valley as a natural route for travelling from the Site to areas west, including the Bow River Valley. However, there are considerable barriers to wildlife movement on the north and east boundaries due to Bow Valley Trail and 12 Mile Coulee Road.

We applied provincial Environmentally Significant Areas (ESA) criteria to evaluate natural features on the landscape. The central watercourse and associated wetland and riparian zone is considered an ESA because it is a natural watercourse and because it provides natural habitat conditions for wildlife. None of the remaining wetlands meet the provincial criteria for Aquatic ESAs.

Potential Impacts and Mitigations

The potential impacts of the proposed development were assessed with reference to a concept for development provided to Westhoff by Brown & Associates Planning Group on June 21, 2017.

Potential Impacts include:

• loss of soil from compaction, removal, erosion and/or admixing;

- sediment runoff to adjacent wetlands, watercourses and surrounding areas;
- accidental spills of fuels, chemicals, and other potentially hazardous materials;
- loss or alteration of vegetation, including native plant communities;
- loss of 2 out of 4 naturally occurring wetlands;
- local loss of portions of Wetland 4 at road crossings;
- potential changes in the hydrology of Wetland 1 and Wetland 4;
- potential impacts to the central watercourse due to the introduction of stormwater, including bank erosion and possible reduction in water quality;
- damage, disturbance, and/or loss of individual wildlife species and their residence; and
- changes in local wildlife diversity.

The following mitigation measures will be implemented to reduce, eliminate, or control the potential negative impacts of the proposed development.

- Erosion and Sediment Control (ESC) Plan to limit or control deleterious substances leaving the Site or entering area water bodies;
- Environmental Protection Plan (EPP) to manage potential environmental impacts resulting from construction;
- Landscape and Weed Management Program to reduce post-development impacts to native plant communities and wildlife habitat;
- Setbacks applied to both the central watercourse and Wetland 1 for the purposes of pollution prevention and slope stability;
- Stormwater management strategies to mitigate for potential impacts to the central watercourse and Wetland 1;
- A Wetland Management Plan to document the detailed approach to mitigating potential impacts to Wetlands 1 and 4;
- In-lieu payment to the Province (wetland replacement), as per the Alberta Wetland Mitigation Directive, for Wetlands 2 and 3;
- Land Owner's Manual to educate area residents on what they can do to maintain the health of natural open spaces over the long-term and how to avoid conflicts with wildlife; and
- A monitoring program to document the implementation and success of the ESC Plan and EPP.

Ideally, stripping and grading will be completed outside the critical time period for many wildlife species: approximately April 1 to August 31. If stripping and grading within the critical time period cannot be avoided, on-site monitoring will be conducted to avoid impacting wildlife and wildlife residences, in particular active breeding sites.

Residual Impacts and Significance

We predicted that the proposed development will have residual impacts after mitigation measures are implemented. These residual impacts are the loss of upland plant communities, wetlands and associated wildlife habitat, and the loss of individual wildlife species.

At the time this BIA was prepared, there was no formal process, or available provincial or municipal criteria, for determining what qualifies as a significant residual loss of native plant communities. As per the Bearspaw Area Structure Plan, (adopted June 1994), native plant communities are not automatically acquired and/or protected from development. The current concept plan retains and integrates a considerable portion of the natural plant communities and associated topography within the area.

The proposed development will result in the permanent loss of 2 of the 4 wetlands. Wetland replacement is one of multiple accepted approaches to managing loss of wetlands on both provincial and municipal scales. We conclude this residual impact is not significant provided wetland loss is off-set through wetland replacement applying accepted provincial standards.

Wildlife fatalities are a residual impact of the development, particularly as a result of stripping and grading. In general, we would consider a significant residual impact on wildlife to be the damage or loss of a listed species. Stripping and grading is expected to occur outside of the breeding season when less mobile juveniles are present: April 1 to August 31. We anticipate the fatality risk of listed species outside the breeding season to be low. Therefore, no significant residual impacts to wildlife are expected.

Wildlife fatalities are a residual impact of the development, particularly as a result of stripping and grading. In general, we would consider a significant residual impact on wildlife to be the damage or loss of a listed species. Stripping and grading is expected to occur outside of the breeding season when less mobile juveniles are present: April 1 to August 31. We anticipate the fatality risk of listed species outside the breeding season to be low. Therefore, no significant residual impacts to wildlife are expected.

Cumulative Effects

We considered the potential for cumulative effects on wetlands and water resources resulting from the proposed development. To date, the cumulative effects of development on wetlands have been mitigated primarily through the Province's replacement program, as will be the case for this Project. Overall, we anticipate that the cumulative effects of past, current and future land use and activity in this region will be managed through the retention of wetlands within the Project Site coupled with the application of provincially approved wetland replacement measures.

We identify water resources when describing potential cumulative effects even though project-related impacts on water were not assessed in the BIA. The Bow River Basin Council identifies most significant challenges in this sub-basin are the effective flow management of the Bow River downstream of the Bearspaw Dam and management of stormwater runoff. We anticipate the potential local impacts on water will be addressed through other studies pertaining to stormwater management. Provided best management practices are implemented that meet available municipal and provincial standards, the proposed development is not expected to contribute to cumulative adverse effects on water resources in the sub-basin as a whole."

4.0 POST-DEVELOPMENT HYDROLOGIC AND HYDRAULIC ANALYSIS

The City of Calgary Stormwater Management & Design Manual (2011) requires that the major drainage system, including storage facilities, be designed to accommodate the runoff resulting from a 1:100-year return period storm event. For this design, there are two approaches to the simulation of runoff characteristics, a single storm event and a continuous events model.

Single Storm Event Analysis

The Single Storm Event Analysis is the most common stormwater management analysis method and is based on a single storm event which could be a real historic storm or a theoretical design storm. The precipitation input to the single event simulation model is obtained using the Calgary Intensity Duration Frequency (IDF) curve and the "Chicago Storm" distribution to shape the design hyetograph. For this SMDP study, a storm with 24 hours duration and 5-minute rainfall increments was used.

Continuous Simulation

Continuous simulation modelling for a drainage area allows for continuous analysis of runoff over an extended period of time, typically several years. The model results include time series of flow or water levels, storage volumes, etc. These results allow a probabilistic analysis to determine the frequency of occurrences and capacity requirements for the stormwater ponds.

The continuous simulation was performed using precipitation data recorded at the Calgary International Airport for the period 1960 - 2014 (inclusive). The output of the continuous simulation modelling is peak storage volumes for each year analyzed in the model. Following, a frequency analysis of these annual maximum storage series is carried out to estimate the volume required for a 1:100-year return frequency. Other parameters also used in the model are presented in **Appendix C**.

4.1 Computer Model

There are various computer models used and accepted in Calgary, they include SWMHYMO (Single Storm Event), QHM, EPA SWMM, XP-SWMM, PCSWMM and the Water Balance Spreadsheet for the City of Calgary (WBSCC).

The analysis of both events for this study was performed using the PCSWMM 2019 computer model software Version 7.5.3406 Professional. PCSWMM is a software developed by Computer Hydraulics International and is a comprehensive, GIS-based, spatial decision support system for urban drainage and watershed modelling. Integrating the US EPA SWMM5 engine Version 5.1.015, it accounts for various hydrologic processes that produce runoff from urban and rural areas. PCSWMM also contains a flexible set of hydraulic modelling capabilities used to route runoff, rainfall-dependent infiltration/inflow, and/or external inflows through the drainage system network of pipes, channels, storage/treatment units and diversion structures.

4.2 Post-development Subcatchments

The land use composition of the study area is listed in **Table 8** and the proposed development land use composition is presented in **Figure 3**.

Land Use	Area (ha)	Imperviousness (%)
	. ,	(70)
Single Family lots	2.14	35
Front of Lots	1.92	65
Back of Lots	0.89	0
Roads	0.73	72
Municipal Reserve (MR)	1.16	0
Environmental Reserve (ER)	0.74	0
Dry Pond at HWL	0.19	100
Sub-Total	7.77	35
To Existing	Wetland	
MR	0.33	0
ER	0.69	0
Country Residential Road	0.32	25
Wetland @ HWL	1.13	100
Sub-Total	2.47	49
To Constructe	ed Wetland	
Country Residential (OS-1)	3.78	6
Country Residential (OS-2)	1.74	9
Single Family lots	33.58	51
Front of Lots	6.37	76
Back of Lots	1.01	25
Multi-family	1.13	65
Commercial	19.42	85
Roads	17.55	72
MR	6.67	0
ER	0.89	0
Pond at HWL	2.44	65
Sub-Total	94.58	54
Existing		
North	37.79	3.7
Middle	5.79	0
South	13.70	0
Sub-Total	57.28	2.4
Study Area Total	162.10	35

Table 8 – Land Use Breakdown & Imperviousness

The above-noted imperviousness is based on the City of Calgary Stormwater Management and Design Manual (2011).

Because of the size of the catchment and to simplify the analysis, the contributing catchment was divided into 13 sub-catchments. **Table 9** lists the model sub-catchments and the parameters used in the computer model.

Sub-Catchment Model ID	Area (ha)	Imperviousness (%)	Length (m)	Width (m)	Slope (%)	
		To Dry Pond				
SF-1	7.77	35	125	622	3	
	Directly	to Natural Drainag	e Course			
N1	37.79	3.7	412	917	5	
N2	5.79	0	100	579	3	
N3	13.7	0	100	1370	8	
Sub-Total	57.28	2				
		To Wet Pond				
OS-1	3.78	6	100	378	5	
OS-2	1.74	9	50	348	5	
SF-2	13.99	50	125	1119	3	
SF-3	45.66	46	125	3653	5	
MF-Com	25.52	82	125	2042	2	
Pond-ER	3.89	41	40	973	2	
Sub-Total	94.58	56				
	To Existing Wetland					
Wetland-ER	2.47	49.1	120	206	2	
Total Study Area	162.10	35				

Table 9 – Post-development Sub-Catchment Shape Parameters

The length of each sub-catchment was determined by measuring the longest runoff route before runoff is intercepted; for example, the drainage length of 125 m was established by adding the average depth of a lot (35 m) and the distance along the road between the catchbasin (90 m).

4.3 Infiltration

The SWMM computer model describes rainfall infiltration from the pervious area of a subcatchment into the unsaturated upper soil zone using three different methods:

- Horton Infiltration
- Green-Ampt infiltration
- Curve Number infiltration

The method used in this study is the Green-Ampt Infiltration. Infiltration in the lots and road's pervious surface was estimated based on the proposed BMP (400 mm of absorbent landscape). The infiltration parameters for the BMP are listed in **Table 7**.

The pond was assumed to be lined; therefore no infiltration was accounted for in the analysis. Infiltration in the lots and roads is estimated based on the BMP used at the site. BMP infiltration parameters are presented in **Appendix C**.

The latest version of PCSWMM 2019 used in this runoff analysis contains a Time Pattern Editor that provides the ability to adjust different parameters to reflect seasonal variations. This feature was used to represent frozen ground conditions during the winter months, November to April. During these months a multiplier of 0.05 was applied to the soil conductivity; for the other months of the year, the multiplier is 1.0, representing normal conditions.

4.4 Snow Melt

The PCSWMM software simulates snowmelt using the Snow Pack routine along with temperature, evaporation and wind data. Snowmelt was part of the computer runoff analysis presented in this report; the analysis used temperature data provided by the City of Calgary. The other parameters used in the runoff analysis are presented in **Appendix C**.

4.5 Evaporation

Water surface evaporation is part of the SWMF discharges, however, was not included in the single event model simulation, and it was conservatively assumed that the water level at the start of the simulation was at the Normal Water Level (NWL).

The Monthly evaporation provided in the City of Calgary Stormwater Management & Design Manual (2011) was converted to daily average evaporation to be used in the PSCWMM model. The daily average evaporation data is presented in **Appendix C**.

4.6 Storage Routing

Storage Routing is a command used to simulate the effects of reservoir (pond, traplow) routing. The routing is conducted with the storage-discharge stage data method where the solution is based on the conservation of mass. This command requires that the user provide the outflow-storage relationship of the reservoir. **Table 10** summarizes the storage rating for the existing wetland and **Tables 11 and 12** summarizes the storage-discharge rating for the proposed SWMFs and

	-	-	-
Stage	Elevation (m)	Area (m²)	Total Storage (m ³)
Bottom	1,197.50	1,018	0
	1,197.75	7,072	1,011
	1,198.00	8,482	2,956
	1,198.25	9,674	5,225
Spill Level	1,198.50	11,306	7,848

Table 10 – Existing Wetland Storage Rating Data

Table 11 – Proposed Dry Pond - Storage Rating Data

Stage	Elevation* (m)	Area (m²)	Total Storage (m ³)	ICD Discharge Rate (L/s)
Bottom	1,170.00	1,053	0	0
	1,170.25	1,175	278	3.26
	1,170.50	1,301	588	4.76
	1,170.75	1,432	930	5.89
	1,171.00	1,568	1,305	6.83
	1,171.25	1,707	1,714	7.66
HWL	1,171.50	1,868	2,161	8.41

* Elevations to be confirmed during detail design

Stage	Elevation* (m)	Area (m²)	Total Storage (m ³)	Active Storage (m ³)	ICD Discharge Rate (m ³ /s)
Bottom	1,194.50	1,265	0	0	0
	1,195.00	1,897	790	0	0
	1,195.50	3,556	2,028	0	0
	1,196.00	5,728	4,440	0	0
	1,196.50	7,250	7,681	0	0
	1,197.00	8,882	11,711	0	0
	1,197.50	11,112	16,645	0	0
NWL	1,198.00	15,788	23,352	0	0
	1,198.50	18,721	32,081	8,729	0.044
	1,199.00	20,588	41,907	18,555	0.065
	1,199.50	22,493	52,676	29,325	0.081
HWL	1,200.00	24,432	64,407	41,055	0.094

Table 12 – Proposed Constructed Wetland - Storage Rating Data

* Elevations to be confirmed during detail design

4.7 Sediment Removal Analysis

Water Quality modelling requires input data for pollutant *built-up*, pollutant *washoff* and pond *settling velocities*. **Tables 13 and 14** summarize the build-up and washoff parameters used in this SMDP; these were taken from the Glenmore Reservoir Stormwater Quality Improvement Study (J N MacKenzie, May 1992). **Table 15** lists the sediment particle size distribution and settling velocities that are contained within the City of Calgary Stormwater Management and Design Manual (September 2011).

Table 13 - Pollutant Build-up Parameters

Parameter	Impervious Areas	Pervious Areas
Build-up Method	Power Linear	Power Linear
Equivalent Initial Accumulation Period	30 Days	30 Days
Maximum Accumulation	0.20 kg/m ²	0.20 kg/m ²
Built-up	0.00055 kg/m ² per Day	0.00055 kg/m ² per Day

Table 14 - Pollutant Washoff Parameters

Parameter	Impervious Areas	Pervious Areas
Washoff Method	Build-up/Washoff	Build-up/Washoff
Washoff Coefficient	6000 per m ³	3000 per m ³
Washoff Exponent	1.2	1.2

Table 15 - Settling Velocity Data

Fraction Number	Particle Size (µm)	Size Classification	Size Fraction (%)	Settling Velocity (m/s)
1	≤10	Fine silt	23	0.00000592
2	10-20	Medium silt	9	0.0000473
3	20-50	Medium silt	13	0.000283
4	50-150	Coarse silt	23	0.00195
5	≥150	Fine sand	32	0.0124

Schematic diagram and Input and Output files for the PCSWMM continuous simulation are included in **Appendix C**.

4.8 Water for Wetland to be retained

To provide water to the wetland to be retained, discharge from the constructed wetland. Water quality will be achieved a chain of three (3) water quality improvement methods; they are:

- 1. Oil/grit separators located at the first manhole upstream of the constructed wetland inlets.
- 2. Settling forebays at each inlet and,
- 3. The main body of the constructed wetland.

5.0 DESIGN DETAILS

The ponds proposed to control the discharge of runoff generated by the proposed development are in accordance with the City of Calgary *Stormwater Management & Design Manual* (2011) and Alberta Environment *Stormwater Management Guidelines.*

The first pond is a Dry Pond, which will service 8.50 ha of land that because of the topography of the site could not be directed by gravity into the main pond.

The main pond is a wet pond, which will provide discharge control for the remaining of development. This pond will be finished as a constructed wetland, in a way that blends with the existing wetland and the natural drainage course.

In the dry pond the entire storage is active and available for discharge rate (quantity) control. In the constructed wetland, the storage below NWL is not available for discharge rate control; it is only significant in terms of water quality with respect to turnover rate and the pond's ability to improve the quality of the receiving runoff. The storage above the NWL is referred to as active storage and is the available capacity to control discharges to the receiving outlet.

Water quality control for the discharge from the dry pond will be achieved by an OGS unit installed in the first manhole upstream of the pond inlet pipe. Water quality for the discharge from the constructed wetland will be achieved first, by two (2) OGS units, each one installed at the first manhole upstream of each pond inlet, then by the forebays at each inlet and finally by the constructed wetland portion.

5.1 Pond Layout

The proposed Wet Ponds were sized to retain runoff for up to the 1:100-year storm event from the drainage catchment being serviced. The ponds will discharge into the existing natural drainage course at a rate based on the unit discharge rate described in **Section 3.4** of this report. **Tables 16 and 17** summarize the characteristics of the proposed SWMFs.

	Parameter	Value	Unit
General	Contributing Catchment Area	7.77	ha
	Side Slopes below NWL	5H:1V	
	Side Slopes between NWL & HWL	5H:1V	
	Side Slopes above HWL	4H:1V max	
Elevation	Pond Bottom Elevation	1,170.00	m
	HWL Elevation	1,171.50	m
	1:100 Year Elevation	1,170.94	m
	Freeboard Elevation	1,171.50	m
Depth	Pond Depth Below HWL	1.50	m
Area	Area at Bottom	1,053	m ²
	Area at HWL	1,868	m²
Volume	Active Storage Capacity (Bottom to HWL)	2,161	m ³
	1:100 Year Active Volume (Single Event)	992	m ³
	1:100 Year Active Volume (Continuous simulation)	1,020	m ³
Discharge	Maximum Discharge @ HWL	7.7	l/s
	Preliminary ICD radius	27.6	mm
	1:100 Year Discharge	6.1	l/s

Table 16 – Dry Pond Characteristics

* Active Volume above NWL

	Parameter	Value	Unit
General	Contributing Catchment Area	94.58	ha
	Side Slopes below UNWL	Varies	
	Side Slopes between UNWL & HWL	Varies	
	Side Slopes above HWL	4H:1V max	
Elevation	Pond Bottom Elevation	1,194.50	m
	NWL Elevation	1.198.00	m
	HWL Elevation	1,200.00	m
	1:100 Year Elevation	1,199.52	m
	Freeboard Elevation	1,200.30	m
Depth	Pond Depth Below HWL	3.50	m
	Active Fluctuation Depth above HWL	2.00	m
Area	Area at Bottom	1,265	m²
	Area at NWL	15,788	m²
	Area at HWL	24,432	m²
Volume	Permanent Pool below NWL	23,352	m³
	Permanent Pool Required for water quality	22,260	m ³
	Active Storage Capacity (NWL to HWL)	41,055	m³
	1:100 Year Active Volume (Single Event)	27,272*	m³
	1:100 Year Active Volume (Continuous simulation)	29,836*	m³
Discharge	Maximum Allowable Discharge from proposed development	94	l/s
	Maximum Discharge at HWL	94	l/s
	Preliminary ICD radius	90.4	mm
	1:100 Year Discharge	82	l/s

Table 17 – Constructed Wetland Characteristics

* Active Volume above NWL

Figure 15 illustrates the maximum and minimum water levels expected for the proposed SWMFs as determined by the continuous simulation (PCSWMM). **Figure 17** presents a comparison of the maximum and minimum water levels for the existing wetland under pre-development and post-development conditions, it also shows the depth duration exceedance under both pre and post-development conditions.

5.2 Outlet Control Structure

The Dry Pond outlet piping is proposed to be located at the south end of the pond. The outlet pipe connects the pond to the outlet control structure which will discharge to the natural watercourse. The Constructed Wetland outlet piping is proposed to be located on the east side of the pond. The outlet pipe connects the pond to the outlet control structure which discharge to the existing wetland.

The outlet control structures are intended to control the pond discharge to the allowable rate described in **Section 3.4**. The preliminary design proposes a two-chamber system, with a weir wall at the HWL and discharge controlled by an orifice plate. The preliminary ICD sizes for ultimate conditions are presented in **Tables 17 and 18**.

5.3 Emergency Overflow

The overland escape route for the Dry Pond is located at the south end of the pond directed to the natural drainage course. The overland escape route for the Constructed Wetland is located on the west side of the pond, also directed to the natural watercourse.

Final pond details (i.e. shape, escape route, control structure, etc.) will be established during pond detail design. **Figures 9 and 10** show preliminary pond design and cross-section for the proposed Dry Pond

and Figures 12 and 13 show preliminary pond design and cross-section for the proposed Constructed Wetland. **Figures 11 and 14** show preliminary outlet control structure designs for each pond.

5.4 Frequency of Ponding

The frequency distribution analysis was based on the application of the "Frequency Analysis Procedure Manual" and spreadsheet DFASCC_v1.2 provided by Water Resources. **Figure 16** illustrates the most appropriate frequency distribution of storage volumes for the proposed SWMFs based on the frequency analysis of the continuous simulation results (PCSWMM). The Frequency Analysis is included in **Appendix D**. **Table 18** summarizes the modelled frequency of Total Storage volumes.

Return Period	Storage Volume (m ³)		
(Years)	Dry Pond	Constructed Wetland	
2	378	32,700	
5	531	37,500	
10	639	40,900	
20	748	44,400	
50	898	49,100	
100	1,020	52,800	

Table 18 – Frequency of Total Storage Volumes	
---	--

For the Dry Pond, the 1:100 year volume calculated by the Frequency Analysis is higher than the single storm event and the maximum computed by the continuous simulation; therefore, this volume should be used in the detail design of the Dry Pond.

For the Constructed wetland, the maximum volume computed by the continuous simulation is higher than the single event and the 1:100 year volume estimated by the Frequency Analysis; therefore, the maximum volume from the PCSWMM model should be used for detail design purposes.

5.5 Post-development Peak Runoff Rate

The PC-SWMM model was utilized to obtain the peak runoff rate during a 1:100 year 24-hour single event utilizing a Calgary Chicago Design Storm. The results are tabulated below:

Discharge From	Single Event 24h-100y (m³/s)			
Dry Pond	0.006			
Existing Wetland	0.084			
TOTAL	0.090			

Table	19 -	Peak	Flow	Results
-------	------	------	------	---------

The analysis in the Amendment Phase 1 Pond C and D report includes 24.88 ha at 2.5 L/s/ha coming from the Ascension lands, this equates to 0.062 m³/s. Since Ascension is planning on discharging at 0.094 m³/s, some upgrades to the existing infrastructure will be required to accommodate the additional 32 L/s. A preliminary review of the existing infrastructure across the Blueridge and Watermark residential developments shows the following upgrades:

Drainage within the Blueridge is all overland with some culverts under the roads. We proposed to convey the discharge from Ascension on a new road ditch to be located along the west side of Blueridge View,

from the existing wetland down to the south end of Blueridge View; at this point will cross the road with a new culvert and enter the Watermark storm system on the north end of the cascading ponds.

Preliminary review of the storm pond system within Watermark identifies to because the flow from Ascension is flow through no modifications are required to the storm ponds, the only adjustment is replacing the ICDs in the OCS of Ponds C and D. Initial analysis indicates that the required ICD for Pond C is a 530mm x 830mm rectangular opening and for Pond D a 528mm diameter ICD.

During detail design, all culverts downstream of Watermark will need to be surveyed to ensure appropriate capacity to accommodate this additional 32 L/s.

5.6 Runoff Volume Discharges

Table 20 summarizes the target runoff volume discharge and estimated average annual runoff volume resulting from the PCSWMM continuous simulation analysis presented in this report; the total discharge volume (55 years) is 746,366 m³.

Catchment	Total Area	Target Avg. Annual Runoff		Estimated Avg. Annual Runoff	
Catchinent	(ha)	Volume (m ³)	Depth (mm)	Volume (m³)	Depth (mm)
Ascension	162.10	81,052	50	73,532	45

Table 20 - Average Annual Runoff Volumes

The above Table shows that the volume control target established by the Bearspaw – Glenbow Master Drainage Plan and listed in **Section 3.4** is met.

5.7 Water Balance

 Table 21 presents the PCSWMM model Water Balance as Total Precipitation and losses.

	Depth (mm)
Total Precipitation	22903.400
Evaporation Loss	8965.694
Infiltration Loss	10906.102
Surface Runoff	3109.378
Snow Cover	2.600
Surface Storage	18.037
Continuity Error (%)	-0.393

Table 21 – Water Balance

5.8 Water Quality

Water quality requirements for subcatchment SF-1 will be achieved by an OGS unit installed in the first manhole upstream of the Dry Pond inlet. And, from the constructed wetland, water quality will be achieved by a three (3) stage process;

- 1. Oil/grit separators located at the first manhole upstream of the constructed wetland inlets.
- 2. Settling forebays at each inlet and,
- 3. The main body of the constructed wetland.

Appendix E contains information on the proposed OGS units that will meet/exceed the water quality requirements imposed by the City of Calgary and Alberta Environment.

5.9 Storm Pond Sediment Removal

Sediment removal from Ascension will be met by the forebay that will be incorporated in the proposed Constructed Wetland. Water quality improvement by the proposed pond was modelled with the PCSWMM computer software; **Tables 22** summarize the results of the sediment removal simulation for the various size fractions, as determined by the PCSWMM model. The results meet the Alberta Environment and Rocky View County target objective which is 85% removal of particles greater than 50 μ m.

Particle size (µm)	% Removed
< 10	82.1
10 - 20	93.9
20 - 50	95.8
50 - 150	97.1
> 150	99.5
Totals	94.1

Table 22 - Pond Sediment Removal Efficiency

5.10 Forebay Sizing

The size of the forebay for the Stormwater Detention Facility is based on the calculations presented in the City of Calgary *Stormwater Management & Design Manual,* for minimum forebay length (based on settling and dispersion) and for minimum bottom width. **Tables 23 and 24** provide the sizing of the sedimentation forebays for the west and east inlet into the Constructed Wetland that meets the City of Calgary criteria.

Sedimentation Forebay Characteristics						
Forebay Side Slopes below NWL	5	H to 1V				
Forebay Length at NWL	70.0					
Forebay Width at NWL	55.0					
Effective Forebay Width at NWL (m)	19.0					
Forebay Depth @ NWL (m)	3.5					
Maximum flow rate from pond (m ³ /s)	0.094	94.58 ha @ 0.99 L/s/ha				
Design settling velocity for 50 μm (m/s)	0.00195					
Maximum inlet flow rate (m ³ /s)	3.162	47.17 ha @ 70 L/s/ha				
Design velocity in forebay (m/s)	0.5					
Hydraulic Design Criteria						
	ed Required					
Forebay length at NWL (m)	70.0	to be greater than or equal to 56.9				
Forebay bottom width (m)	19.0	to be greater than or equal to 7.1				
Effective Forebay cross-section area @ NWL (m ²)	66.5					
Forebay cross-section velocity (m/s)	0.001	to be less than or equal to 0.15				
Calculated Length/Width Ratio	102.0	to be greater than or equal to 2.0				
Calculated Hydraulic Parameters						
Minimum Forebay Settling Length (m)	57					
Minimum Forebay Dispersion Length (m)	14					
Minimum Bottom Width (m)	7					

Table 23 - West Inlet Forebay Sizing

Sedimentation Forebay Characteristics						
Forebay Side Slopes below NWL	5	H to 1V				
Forebay Length at NWL	75.0					
Forebay Width at NWL	55.0					
Effective Forebay Width at NWL (m)	19.0					
Forebay Depth @ NWL (m)	3.5					
Maximum flow rate from pond (m ³ /s)	0.094	94.58 ha @ 0.99 L/s/ha				
Design settling velocity for 50 μm (m/s)	0.00195					
Maximum inlet flow rate (m³/s)	4.335	26.03 ha @ 115 L/s/ha				
Design velocity in forebay (m/s)	0.5					
Hydraulic Design Criteria						
	Calculat	ed	Required			
Forebay length at NWL (m)	75.0	to be greater than or equal to	66.7			
Forebay bottom width (m)	19.0	to be greater than or equal to	8.3			
Effective Forebay cross-section area @ NWL (m ²)	66.5					
Forebay cross-section velocity (m/s)	0.001	to be less than or equal to	0.15			
Calculated Length/Width Ratio	117.1	to be greater than or equal to	2.0			
Calculated Hydraulic Parameters						
Minimum Forebay Settling Length (m)	67					
Minimum Forebay Dispersion Length (m)	20					
Minimum Bottom Width (m)	8					

Table 24 – East inlet Forebay Sizing

6.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This study has concluded that:

- The Sandy Loam topsoil as identified in Geotechnical Investigation for the Hawkwood Lands (now known as Ascension), exp Engineering Services Inc., is well suited for the BMP measures suggested in this report.
- The stormwater management facilities proposed in this report, will control the peak discharge from the Ascension development to 87 L/s, which is well within the allowable 101 L/s as stipulated in the Bearspaw Glenbow Master Drainage Plan, Worley Parsons; June 2010.
- The Best Management Practices suggested in this report will reduce the runoff volume discharge from Ascension to the receiving natural watercourse, to an average annual of 43 mm; therefore meeting the 50 mm average annual volume control discharge stipulated in the Bearspaw – Glenbow Master Drainage Plan, Worley Parsons; June 2010.
- Water quality requirements for subcatchment SF-1 will be achieved by an OGS unit installed in the first manhole upstream of the Dry Pond inlet. And, from the constructed wetland, water quality will be achieved by a three (3) stage process;
 - 1. Oil/grit separators located at the first manhole upstream of the constructed wetland inlets.
 - 2. Settling forebays at each inlet and,
 - 3. The main body of the constructed wetland.

Recommendations

It is recommended that:

- 400 mm of topsoil be placed on all landscaped areas, public and private.
- The BMPs presented in this study be implemented in each stage of development to ensure a runoff volume reduction.
- Since the Staged Master Drainage Plan is based on preliminary information, a pond report be
 prepared at a detailed design and submitted to the approving agencies. The pond report should
 detail pond design components, including the Inlet Control Device, Outlet Control Structures and
 computer simulation modelling to verify the performance and operation of the ultimate stormwater
 management facility.
- Existing infrastructure from Ascension to outlet BO-1 be surveyed and analysis for capacity, to determine all required upgrades to accommodate the additional 32 L/s of peak flow discharge.
- The analysis presented in this report is accepted by the approving agencies.

Corporate Authorization

This document entitled, "Ascension – Staged Master Drainage Plan" was prepared by LGN Consulting Engineering Ltd. It is intended for the use of Highfield Land Management Inc., their consultants and contractors responsible for the development of noted property and approval authorities for which it has been prepared. The contents of the report represent LGN Consulting Engineering Ltd.'s best judgment based on available information at the time of preparation. Any use which a third party makes of the report, or reliance on or decisions made based on it, are the responsibilities of such third parties. LGN Consulting Engineering Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on the report.

Until approved by Rocky View County, duplication or distribution of this report or any portion hereof is forbidden and requires the approval of LGN Consulting Engineering Ltd.

Unauthorized use of the concepts and strategies reported in this document and any accompanying drawings and/or figures is forbidden and is the sole intellectual property of the author.

PERMIT TO PRACTICE LGN CONSULTING ENGINEERING LTD. PERMIT NUMBER: P 6400 The Association of Professional

Engineers and Geoscientists of Alberta

CORPORATE PERMIT

REFERENCES

Alberta Environment; Evaporation and Evapotranspiration in Alberta, 1912-1985, Data 1912-1996; January 1999.

Alberta Environment; Municipal Policies and Procedures Manual; April 2001.

Alberta Environment; *Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems*; January 2006.

Alberta Environmental Protection; Stormwater Management Guidelines for the Province of Alberta; January 1999.

Chow, Ven Te, Maidment, David R. and Mays, Larry W; *Applied Hydrology*; McGraw-Hill Book Company; 1988.

City of Calgary; Stormwater Source Control Practices Handbook; November 2007.

City of Calgary, Wastewater & Drainage; Stormwater Management & Design Manual; 2011.

Computer Hydraulics Inc.; Rules for Responsible Modeling, 4th Edition; 2005.

Computer Hydraulics Inc.; User's Guide to SWMM5, 13th Edition; November 2010.

Computer Hydraulics Inc.; PCSWMM User's Manual; 2011'

Exp Services Inc.; Amendment Watermark Phase 1 Ponds C and D; May 2012.

Exp Services Inc.; Geotechnical Investigation Report; November 2016.

IBI Group; Morton Development Staged Master Drainage Plan; July 2020.

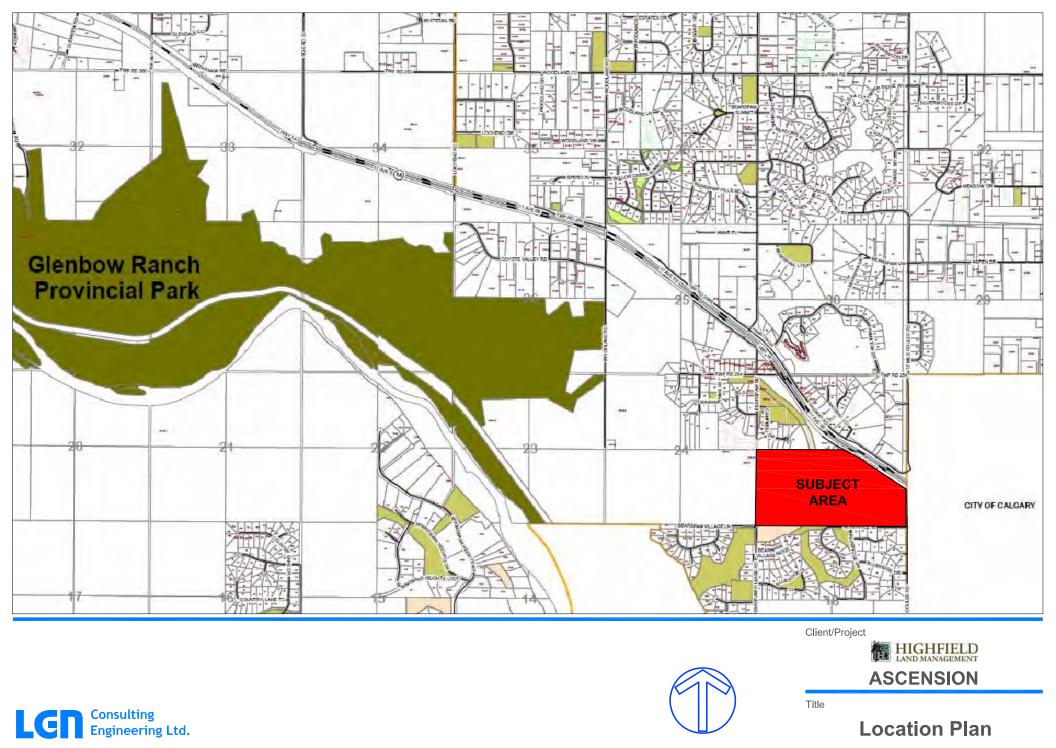
ISL Engineering and Land Services, Rocky View County; Glenbow Ranch ASP Master Drainage Plan; January 2017.

Kerr Wood Leidal Associates Ltd.; Haskayne Master Drainage Plan; November 2017.

Stantec Consulting Ltd.; Haskayne Staged Master Drainage Plan; May 2019.

USDA, Natural Resources Conservation Service; *National Engineering Handbook/Part 630 – Hydrology, Chapter 7*; January 2009.

Westhoff Engineering Resources, Inc.; Master Drainage Plan for Watermark at Bearspaw; July 2010.


Westhoff Engineering Resources, Inc.; Stormwater Pond Report for Watermark Phase 1 Ponds C and D; March 2011.

Westhoff Engineering Resources Inc.; Biophysical Impact Assessment; July 2017.

Worley Parsons; Bearspaw – Glenbow Master Drainage Plan; June 2010.

FIGURES

0.	cal			N I	T	C
30	Jai	e	•	N		0

Figure No.

1

- ---- Subject Land
- --- Study Area
 - ---- Municipal Boundary

Client/Project

ASCENSION

Title

Study Area

Scale: 1:15,000


Figure No.

2

Sep 13, 2022 - 10:14am W:\2021-177_Highfield Land_Ascension_LUR\5.0 Technical\5.1 Technical Production\5.1.1 AutoCAD\2021-177- Revised option_2021 Nov 16.dwg Fig-Revised Concept

Figure 3

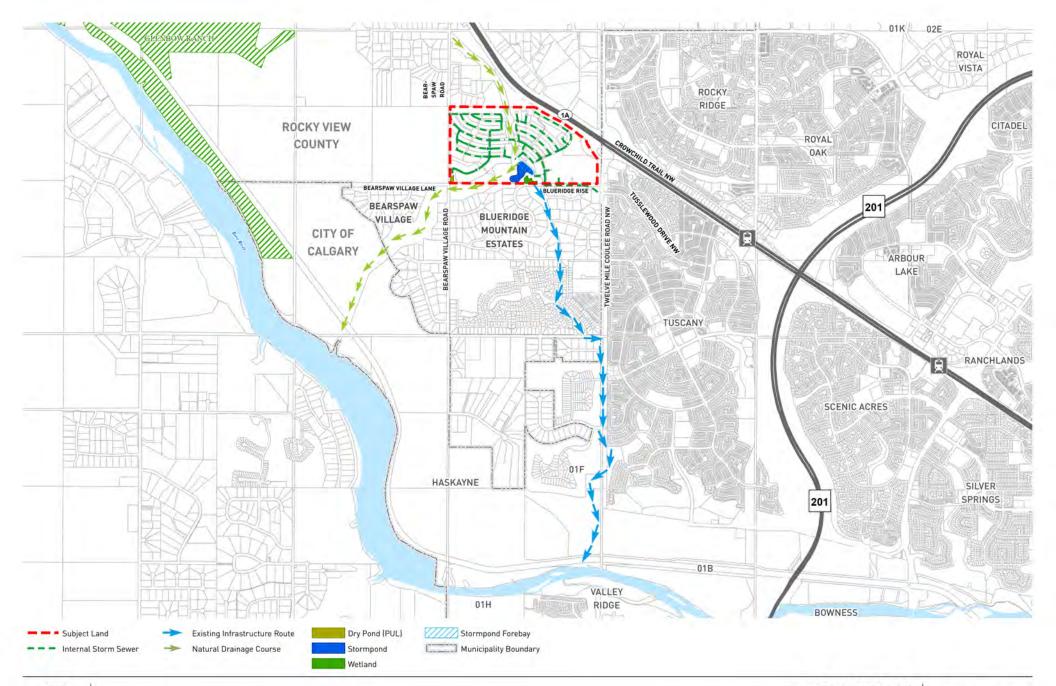
LC Consulting Engineering Ltd.

Legend

- ---- Subject Land
- - Sudy Area
- Municipal Boundary
- 0.5m Countours
- 2.5m Contours
 - — Major Flow Paths

Client/Project

Title

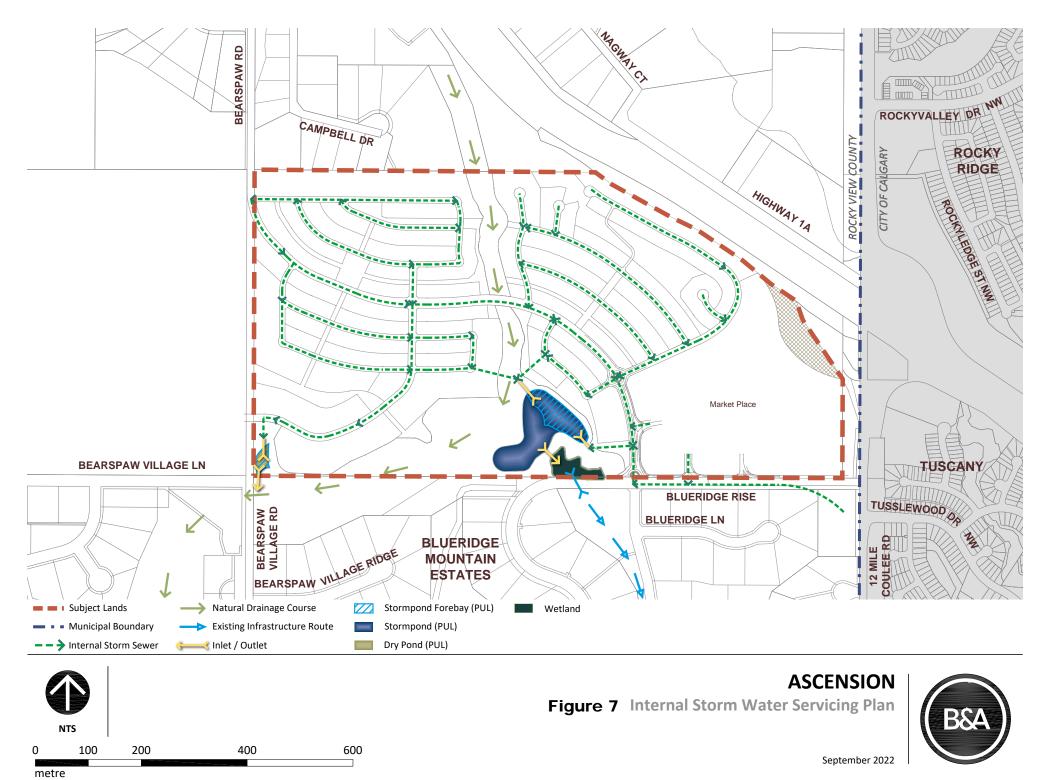

Existing Topography

Scale: 1:15,000

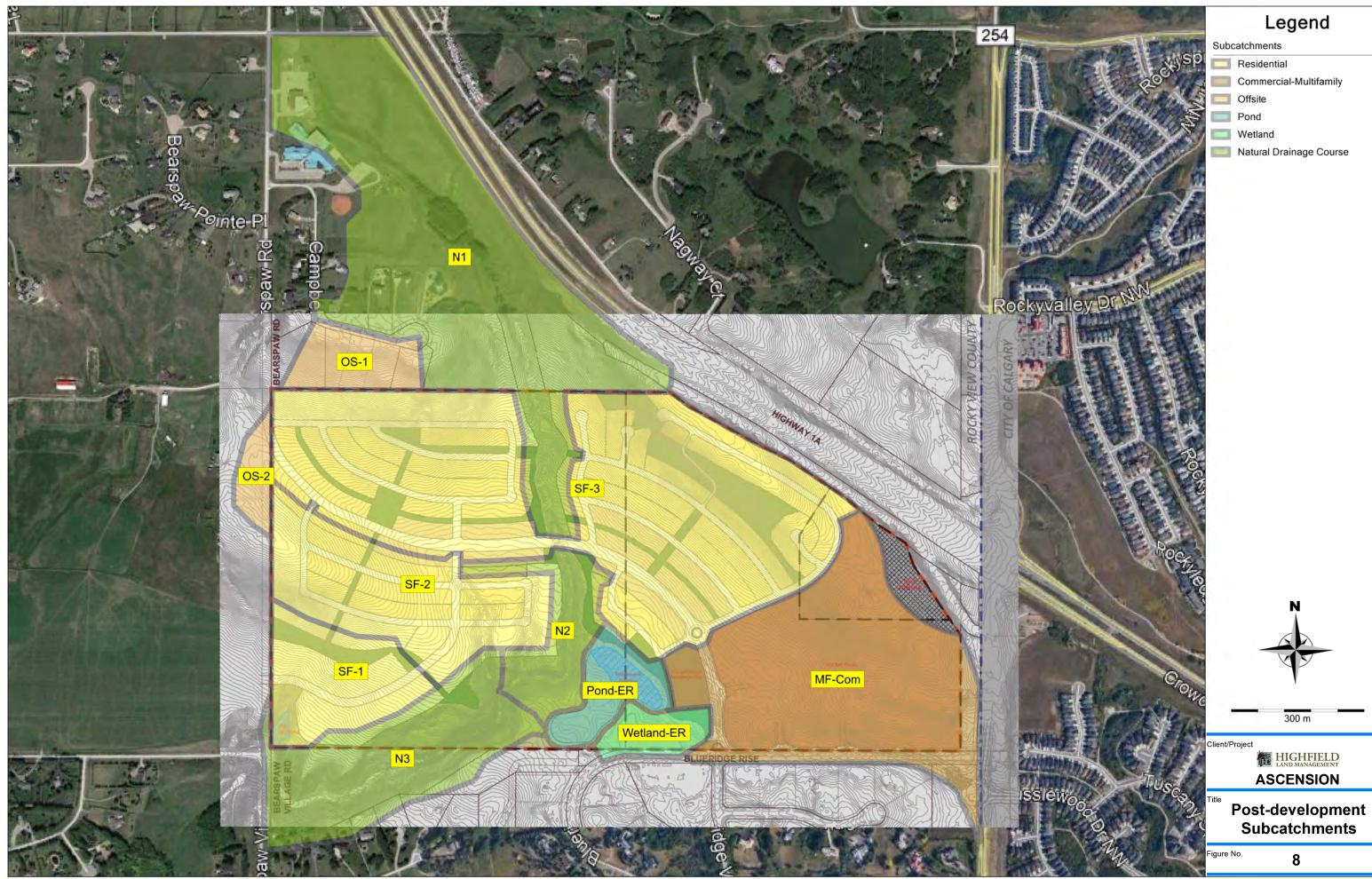
Figure No.

4

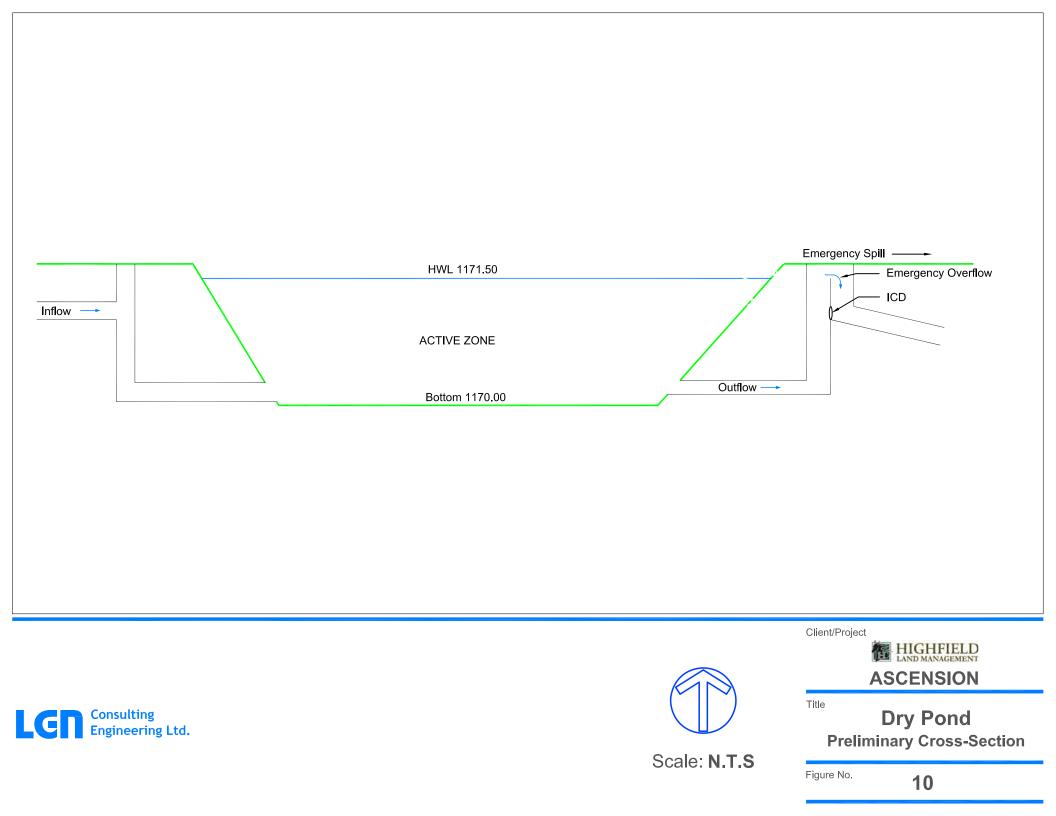
ASCENSION Figure 6 Regional Stormwater Utilities Highfield Land Management

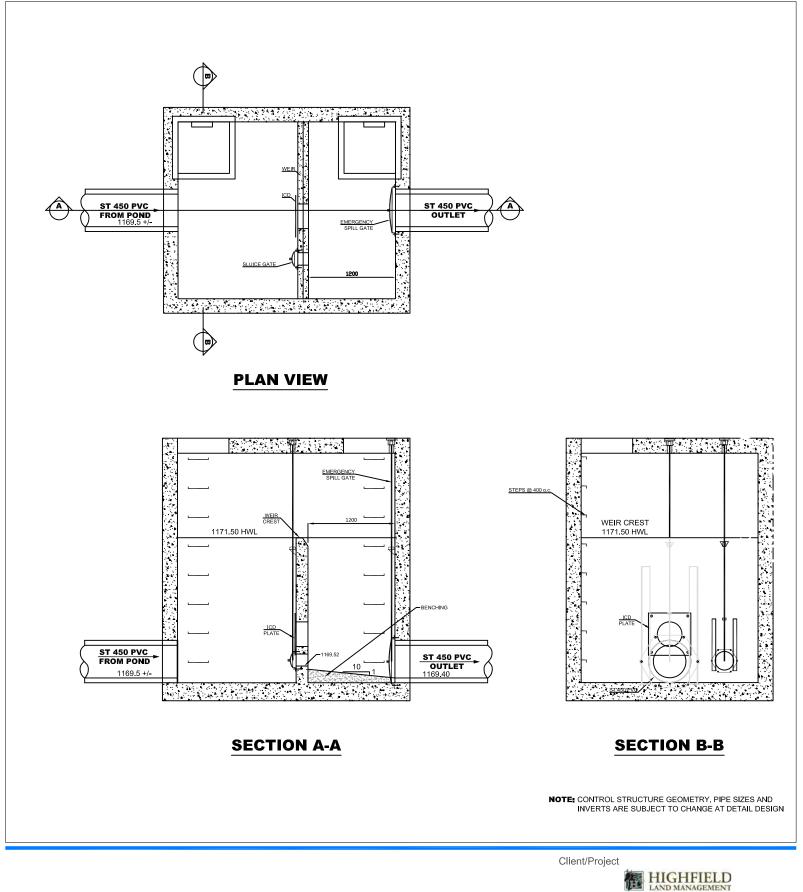

October 2022

WERE STREET AND A LOW WARDA 1972 The shall Law Warnesson (LIPAS II Technical Production): 1 2 515 Maps/2021 (1777 Mapping WL) 1777 Manuscame


kilometre

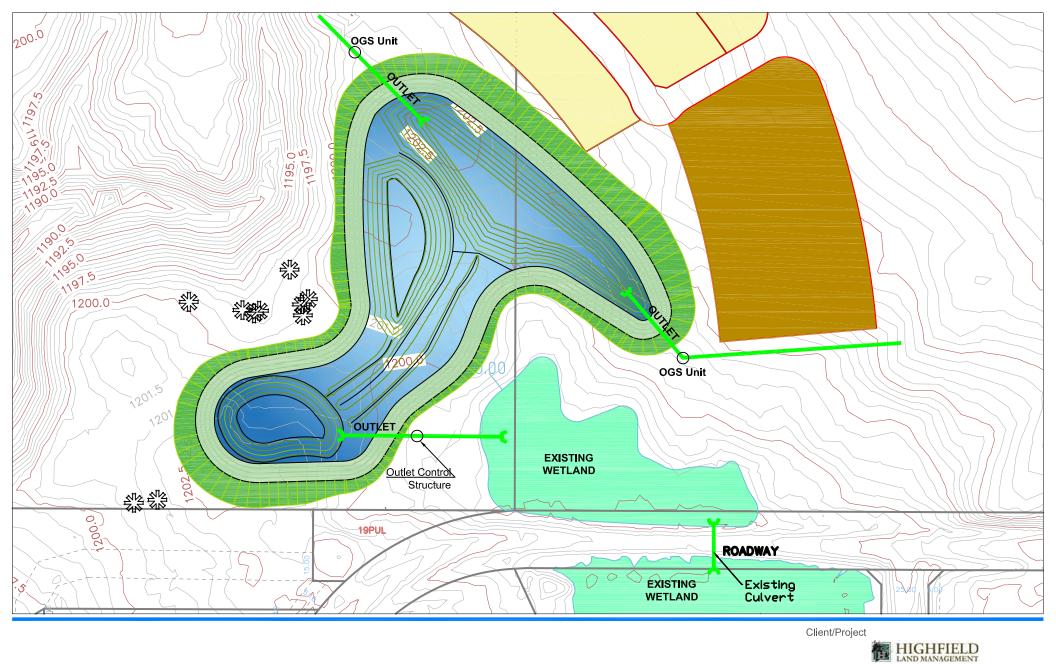
Data Silurica


1:40,000



Oct 05, 2022 - 9:01am W:\2021-177_Highfield Land_Ascension_LUR\5.0 Technical\5.1 Technical Production\5.1.1 AutoCAD\2021-177- Revised option_20225EPT27.dwg Fig-storm

Consulting LGI Engineering Ltd.


Title **Dry Pond Preliminary Outlet Control Structure**

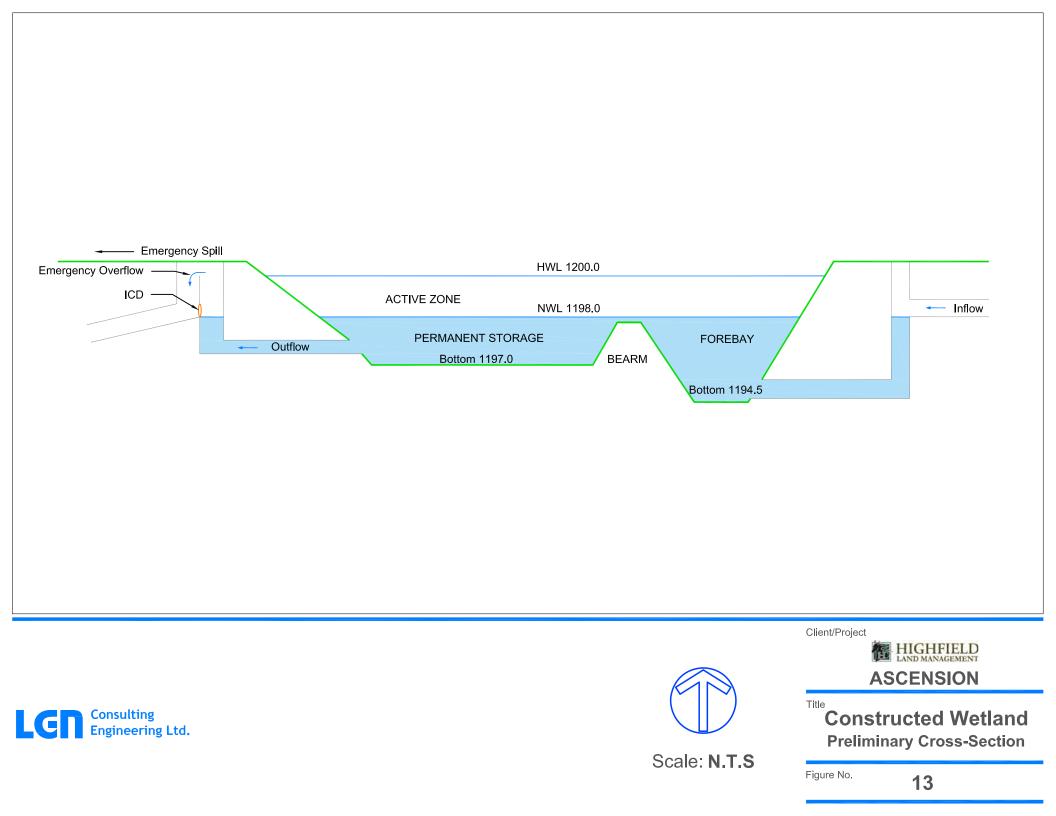
ASCENSION

Scale: N.T.S.

Figure No.

11

ASCENSION



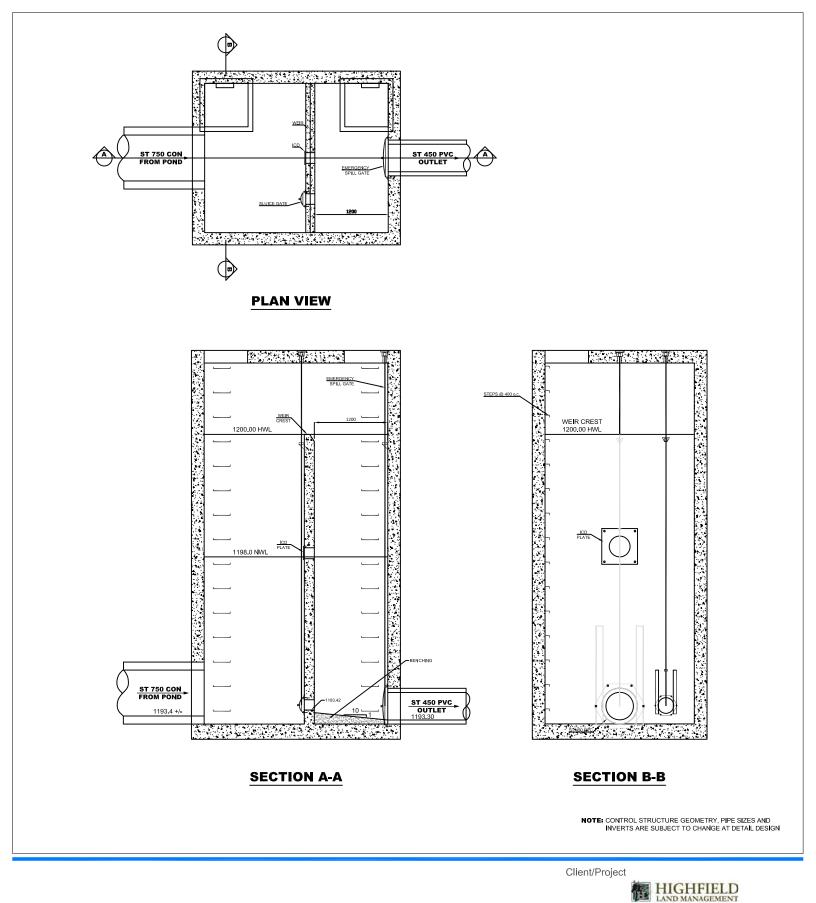

Scale: **1:2,000**

Figure No.

12

LCD Consulting Engineering Ltd.

™ Constructed Wetland Preliminary Outlet Control Structure

Figure No.

Scale: N.T.S.

14

ASCENSION

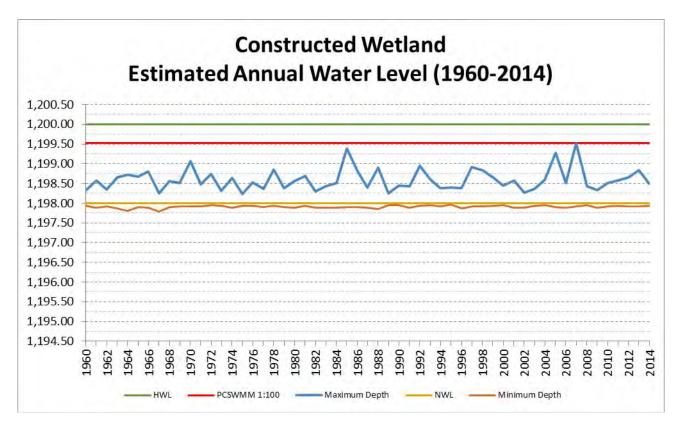


Figure 15 - SWMFs Annual Water Levels

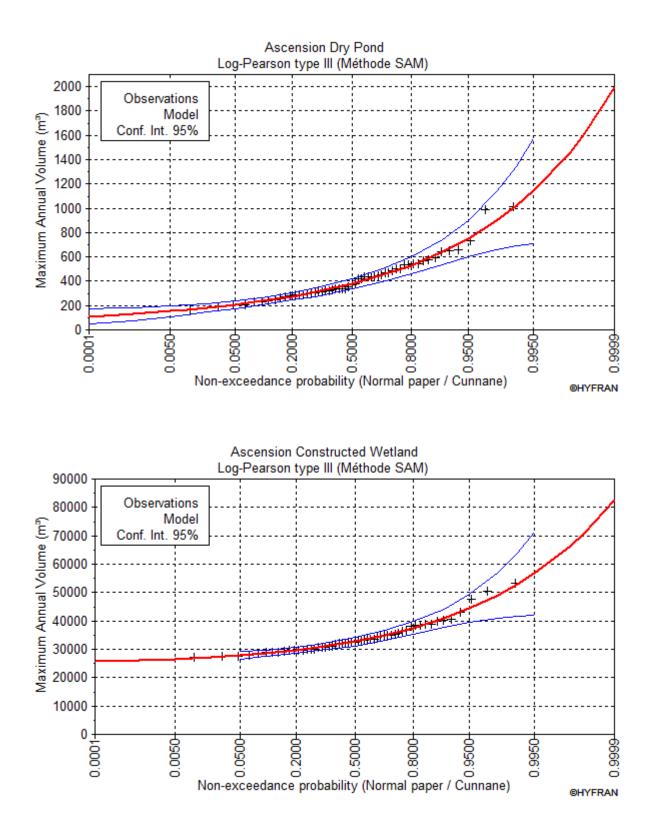
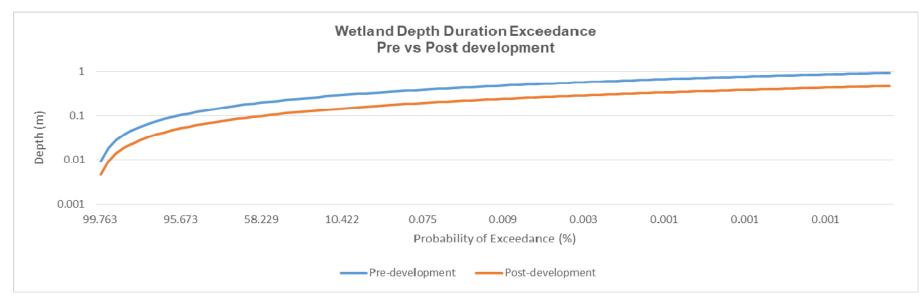



Figure 16 - SWMFs Frequency Distribution

Ascension – Staged Master Drainage Plan Bearspaw, Rocky View County

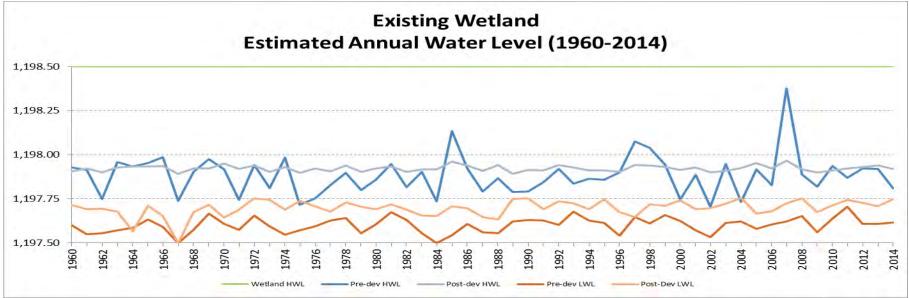


Figure 17 - Pre vs Post-development Wetland hydroperiods

APPENDIX A

Geotechnical Report
 USDA Agricultural Research Service Chart

Geotechnical Investigation Report

for

Highfield Land Management Inc.

Type of Document Final

Project Name Hawkwood Lands

Project Number CGY-00092055-00

Prepared By: Melodie Tang, P.Eng.

Reviewed By: Joel Kliner, M.Sc., P.Eng. exp Services Inc. 375, 7220 Fisher Street SE. Calgary, AB. T2H 2H8 Canada

Date Submitted 11.18.16

Client: Highfield Land Management Inc. Project Name: Hawkwood Lands Project Number: CGY-00092055-00 Date: November 18, 2016

Geotechnical Investigation Report

Highfield Land Management Inc.

Type of Document: Report

Project Number: CGY-00092055-00

exp Services Inc. 375, 7220 Fisher Street SE. Calgary, AB. T2H 2H8 Canada T: +1.403.509.3030 www.exp.com

Prepared by: Melodie Tang, P.Eng. Geotechnical Engineer Ph: 403.509.3030 ext.2288 melodie.tang@exp.com

PERMIT			TICE
EXP	SERVI	CES INC.	
Signature R	- marine	in	2) HA
Date N cv			
PERMIT N The Association			
Geologists and			

Date Submitted: 11.18.16

Reviewed by: Joel Kliner, M.Sc., P.Eng. Senior Geotechnical Engineer Ph. 403.509.3030 ext.2613 joel.kliner@exp.com

Legal Notification

This report is intended solely for Highfield Land Management Inc. and only for the issues addressed in the report. The material in this report represents the professional opinion of **exp** Services Inc. and its best judgment under the natural limitations imposed by the Scope of Work, in context of the information available to **exp** Services Inc. at the time of the report was prepared.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages of any kind, if any, suffered by a third party as a result of decisions made or actions taken on the basis of this report.

This report is limited in scope to only those elements that are specifically referenced in the report. There may be existing deficiencies in the project that were not apparent to us due to the limitations imposed by the scope of work. Therefore, **exp** can accept no liability for any costs or effects incurred by the Client for subsequent discovery, manifestation or rectification of such deficiencies.

Cost estimates, if any, provided in this report are approximations based in 2016 dollars, do not include engineering fees, and are the **exp** Services Inc. opinions of probable construction costs and quantities. These estimates do not reflect any unforeseen conditions that may require adjustments to work plans and scope when the work is done and the conditions are discovered. Any cost estimates provided are subject to confirmation or adjustment at the time competitive bids are obtained from contractors who specialize in the various items of work required. **Exp** Services Inc. makes no representation or warranty, express or implied, as to the accuracy or reliability of these cost estimates.

No part of this report may be extracted and used as a separate reference. The report has been written to be read in its entirety and for the exclusive use of the Client named.

Table of Contents

Legal N	lotification)I	
Table c	of Contents	sii	
1.0	Introducti	on1	
2.0	Proposed	Development1	
3.0	Site Desci	ription1	
4.0	Site Explo	pration Program2	
4.1	Field Explo	pration2	
4.2	Laboratory	v Testing2	
5.0	Subsurfac	ce Conditions3	
5.1	General		
5.2	Topsoil-Like Materials3		
5.3	Clay Fill		
5.4	Sand4		
5.5	Lacustrine Clay4		
5.6	Clay Till4		
5.7	Bedrock		
5.8	Groundwa	ter4	
6.0	Slope Sta	bility Analysis6	
7.0	Discussio	ns and Recommendations8	
7.1	Geotechni	cal Considerations8	
	7.1.1	General	
	7.1.2	Frost Susceptibility	
	7.1.3	High Plastic Clay Soils	
	7.1.4	Erodible Soils9	
	7.1.5	Shallow Bedrock9	
7.2	Site Prepa	ration and Grading9	
7.3	Backfill Ma	aterials and Compaction10	
7.4	Construction	on Excavation and Temporary Dewatering11	
7.5	Pipe Supp	ort12	

	Weeping Tile	
7.7	Foundations	12
7.8	Seismic Class	13
7.9	Concrete Type	13
7.10	Further Work and Geotechnical Review	13
8.0	Closure	14
	Closure dix A – Interpretation and Use of Study & Report	
Append		15
Append Append	dix A – Interpretation and Use of Study & Report	15 16

*ехр.

1.0 Introduction

As requested by Highfield Land Management Inc. (Highfield), **exp** Services Inc. (**exp**) has conducted a geotechnical assessment for the proposed Hawkwood Lands mixed-use development. The scope of work was outlined in the **exp** Proposal Ref. CGY-00092055-00, dated April 28, 2016. The geotechnical study is limited to the evaluation of the geotechnical characteristics of the site and does not include any environmental or chemical assessments of the soil and groundwater.

The following existing geotechnical information, as provided by the client (Highfield), was reviewed by **exp** and utilized as supplementary information for the proposed Hawkwood Lands mixed-use development:

• Report entitled "Geotechnical Evaluation, Hanewood Property Acquisition, M.D. of Rocky View, Alberta" dated August 15, 2007 prepared by McIntosh Lalani Engineering Ltd. (Reference No.: ML 3660).

This report presents the available subsurface exploration data and provides general geotechnical discussions and recommendations pertaining to the design and construction of the proposed development. An Interpretation & Use of Study and Report outlining the intended use and interpretation of this report is attached in *Appendix A*. The Interpretation & Use of Study and Report forms an integral part of this report and should be included with any copies of the report.

2.0 **Proposed Development**

It is understood that the project site will be developed into a mixed use residential subdivision development with single and multi-family dwellings, as well as the potential for some small commercial retail structures and associated access roads.

The project will include the stripping and grading of the site, construction of the underground utilities, and construction of supporting roadways. This report serves to present the results of the field drilling program, laboratory soil testing and geotechnical design and construction recommendations for the general subdivision development.

Any commercial structures and some multifamily units (depending on the size) will require site specific geotechnical evaluations, once specific development design/locations are known.

3.0 Site Description

It is understood that the proposed site to be developed currently consists of 270 acres of land located in Rocky View County, AB within quarter sections SW 19-25-2-W5M and SE 19-25-2-W5M. The site is bound by Crowchild Trail and agricultural land to the north, 12 Mile Coulee Road (The City of Calgary boundary limits) and existing residential developments to the east, agricultural land to the west, and Township Road 253 to the south as shown on the Site Plan (*Figure 1* in *Appendix B*). The site is currently vacant farmland, with one farmstead located within the northeastern portion of the site. Topography of the site generally sloped from north to south and towards the natural drainage course at the centre of the site.

Based on review of surficial geology maps, the subsoil is expected to consist of Porcupine Hills formation sandstone and mudstone underlying silt and clay deposits, silt, sand and gravel deposits, and Spy Hill drift pebble loam till.

[%]ехр.

The site is understood to have a natural drainage course/coulee running north/south through the centre of the site, the slopes of which are anticipated to exceed fifteen percent. As per the City of Calgary Design Guidelines for Subdivision Servicing and Rocky View County Servicing Standards, a slope stability assessment for possible impacts on subdivision setbacks has been addressed in **Section 6.0**.

4.0 Site Exploration Program

4.1 Field Exploration

The borehole drilling was carried out between October 17, 2016 and October 21, 2016. Prior to the fieldwork, the borehole locations were cleared of underground utilities by Alberta One-Call and a private locator. Twenty-nine (29) boreholes, denoted as BH16-01 through BH16-22 and MW16-01 through MW16-07 (completed as monitoring wells) were drilled at the approximate locations shown on the attached Borehole and Cross Section Location Plan (*Figure 2* in *Appendix B*). The boreholes were advanced to depths ranging from 4.0 m to 9.9 m below existing grade using a truck mounted drill rig equipped with 150 mm diameter solid stem augers owned and operated by Earth Drilling Co. Ltd. of Calgary, Alberta.

The subsurface soil conditions were continuously logged and visually classified in the field by **exp** personnel using the Modified Unified Soil Classification System. Soil stratigraphy was logged where changes in stratigraphy were noted, groundwater observed/encountered, and any other significant observations during borehole drilling and sample recovery. Representative soil samples were obtained at regular intervals from split spoon sampling and disturbed samples were collected from the auger flights for each soil stratum. Standard Penetration Tests (SPT's) were conducted at regular intervals to the maximum depth in each borehole. Pocket penetrometer tests were also performed at selected intervals on partially disturbed samples retrieved from the auger flights to determine an indication of the undrained shear strength of the cohesive soils.

Standpipe piezometers were installed in all boreholes in order to permit groundwater level monitoring. Seven (7) groundwater monitoring wells with 50 mm diameter standpipe were installed and constructed as per the recommendations of a hydrogeological consultant and as per the City of Calgary's LID Module 1 to assist in future hydrogeological studies.

The boreholes were backfilled to the surface grade elevation with drill cuttings and a bentonite chip seal as shown on the detailed borehole logs presented in *Appendix C*.

4.2 Laboratory Testing

Laboratory testing was performed on selected samples, including:

- Natural moisture content determinations (158 tests);
- Atterberg Limits tests (12 tests);
- Hydrometer grain size tests on subsoil (12 tests) and hydrometer grain size analyses on topsoil (6 tests); and
- Water soluble sulphate (SO₄) content (8 tests).

The results of the laboratory testing are provided on the borehole logs in *Appendix C* and are discussed in the text of this report.

[%]ехр.

5.0 Subsurface Conditions

5.1 General

The subsurface strata and groundwater conditions encountered at each test location is described in detail on the borehole logs, with a more generalized description provided in this section for discussion purposes. The borehole logs are provided in *Appendix C* for reference.

The subsurface soil conditions encountered were generally found to consist of topsoil overlying lacustrine clay and/or clay till atop bedrock. A summary of the subsurface conditions observed at the borehole locations are presented in the following sections.

It should be noted that the soil boundaries indicated on the borehole logs are inferred from select sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The actual soil and groundwater conditions across the project site may vary between the boreholes.

It should be understood that geological conditions are naturally variable across any project site. Glacial tills are not typically homogenous and uniform across their stratigraphy. The geotechnical information within this report is based on the available subsurface information attained at the twenty-nine (29) discrete borehole and/or monitoring well locations. The precision of the subsurface conditions summarized depends on the methods used, frequency of sampling and the uniformity of the subsurface conditions. The spacing of the boreholes, frequency of soil sampling and the method of exploration have been selected to meet the needs of the project within constraints of the project plans, current exploration budget and schedule for geotechnical purposes. It is necessary to make some assumptions on the anticipated subsurface conditions for the project site between/surrounding the borehole locations to provide geotechnical recommendations for the proposed development. Adequate field reviews during construction should be undertaken to confirm that these assumptions are reasonably applicable for the specific development proposed.

5.2 Topsoil-Like Materials

Topsoil-like materials were encountered in all the boreholes, with thicknesses between 0.1 m to 0.6 m. The term "topsoil" in this report refers to a surficial soil layer with high organic content, and does not have any implications whatsoever as to the quality or suitability for re-use as a growing medium. The topsoil was generally described as having trace to some silt and sandy. The topsoil thicknesses have been determined at the borehole locations only. These thicknesses may not necessarily be representative across the project site as they may vary significantly between relatively widely spaced borehole locations. Additional shallow test locations would be needed to more accurately assess the topsoil thicknesses.

5.3 Clay Fill

Clay fill was encountered beneath the topsoil in BH16-07 with an approximate thickness of 1.6 m. The clay fill was generally described as silty, trace sand, damp to moist, low to medium plastic, and light brown in colour. A layer of buried topsoil was encountered below the clay fill at this borehole location.

**exp

5.4 Sand

Sand was encountered in BH16-20 below the topsoil layer to the termination depth of 6.6 m. The sand was described as silty, gravelly, occasional cobbles and boulders, dry to damp, fine grained, compact, and brown in colour.

5.5 Lacustrine Clay

Lacustrine clay was encountered beneath the topsoil in most boreholes with approximate thicknesses between 1.0 m to 7.0 m. The lacustrine clay was generally described as silty, trace sand, damp to moist, medium plastic (with high plastic clay identified in select boreholes), stiff to very stiff, and brown in colour.

5.6 Clay Till

Clay till was encountered beneath the topsoil or lacustrine clay in all boreholes. The clay till extended to depths between 2.7 m to greater than 9.6 m (where borehole termination depth was reached) below existing ground surface. The clay till was generally described as silty, trace sand, trace gravel, moist, low to medium plastic (with high plastic clay identified in select boreholes), stiff to very stiff, brown in colour, and contained traces of oxides and coal.

As per typical local till strata, sporadically distributed sand seams/pockets (potential source of perched/trapped groundwater) as well as cobbles and/or boulders may occur in the till soils; which were noted at specific borehole locations.

5.7 Bedrock

Sandstone or mudstone bedrock was encountered in boreholes BH16-3, BH16-5, BH16-6, BH16-8, BH16-9, BH16-14, BH16-15, BH16-17, BH16-18, and BH16-19. The depth to bedrock from existing ground surface ranged between 2.7 m to 7.9 m. The sandstone or mudstone bedrock encountered was generally described as extremely weak to very weak, highly to moderately weathered, dry, and light brown to grey in colour.

5.8 Groundwater

As discussed under **Section 4.1**, standpipe piezometers were installed in all the boreholes in order to permit groundwater level monitoring. The groundwater level in each borehole was observed and recorded at the completion of drilling. As required for subdivision developments and as stated in the proposal, the groundwater levels will be monitored once a month over a six-month period. The standpipe piezometers were monitored on October 28, 2016.

Table 5-1 below presents a summary of our findings with respect to the groundwater levels encountered. In addition, the groundwater observations are presented on the borehole logs in **Appendix C.**

*ехр.

	Groundwater Depth (below surface grade), m		
Borehole Number	@ Drilling Completion (October 17-21, 2016)	@ ≈ 1 Week after Drilling Completion (October 28, 2016)	
BH16-01	Dry	Dry	
BH16-02	Dry	Dry	
BH16-03	Dry	Dry	
BH16-04	Dry	Dry	
BH16-05	Dry	8.95	
BH16-06	Dry	Dry	
BH16-07	Dry	Dry	
BH16-08	Dry	Dry	
BH16-09	Dry	7.86	
BH16-10	Dry	4.95	
BH16-11	9.45	8.64	
BH16-12	Dry	6.22	
BH16-14	Dry	5.10	
BH16-15	Dry	5.32	
BH16-16	Dry	Dry	
BH16-17	Dry	Dry	
BH16-18	Dry	Dry	
BH16-19	Dry	5.90	
BH16-20	Dry	Dry	
BH16-21	Dry	Dry	
BH16-22	6.55	6.64	
MW16-01	Dry	Dry	

TABLE 5-1: GROUNDWATER LEVELS, OCTOBER 28, 2016

	Groundwater Depth (below surface grade), m		
Borehole Number	@ Drilling Completion (October 17-21, 2016)	@ ≈ 1 Week after Drilling Completion (October 28, 2016)	
MW16-02	9.45	3.5	
MW16-03	1.22	2.20	
MW16-04	3.05	1.54	
MW16-05	4.88	4.64	
MW16-06	Dry	Dry	
MW16-07	Dry	4.85	

It should be noted that the groundwater elevation varies with seasonal conditions including precipitation, surface drainage, localized hydrogeology and temperature (response to climatic conditions). Typically, groundwater conditions measured in late winter or early spring are often considered seasonal lows until the spring melt begins and localized groundwater response is affected. The long-term static groundwater table can fluctuate as much as 2.0 m over the course of one year in the general geographic area, with the peak groundwater levels generally occurring in June or July. Thus, groundwater levels should be measured periodically until the commencement of construction.

Based on the most recent groundwater depth readings as shallow as approximately 1.5 m across the project site, groundwater is anticipated to be encountered at shallow depths ($< \approx 4.0$ m) associated with localized anticipated project site excavations for the proposed development. It is anticipated that a shallow groundwater table may pose some construction challenges during excavation and should be anticipated in localized areas. Permanent groundwater control/drainage should also be reviewed and provided as deemed necessary for the proposed development.

6.0 Slope Stability Analysis

Various global stability analyses for the existing elevation contours across the development site, corresponding to the representative cross-sections (as shown on *Figure 3*, *Figure 4* and *Figure 5*), were completed by **exp** utilizing the SLOPE/W software program. Six (6) representative cross-sections were created for review based on the geometry taken from the development/contour plans provided by **exp**'s Infrastructure division.

The results of the global stability analyses undertaken for the three most representative cross-sections are presented below and illustrated via the profiles associated with the SLOPE/W outputs as *Figure 6*, *Figure 7*, and *Figure 8*.

Exp has not been provided any historic site-specific stripping and fill placement records across the project site; thus, it is assumed that the overall development site has not undergone any significant grading works over time. Proper site stripping and grading procedures should be undertaken to ensure that unsuitable organic or deleterious soils are not trapped at the base of any fill embankments that may be constructed. All general engineered fill soils for embankment fill should be compacted as per

Section 7.3. Fill placement for embankment fills should not be undertaken in a frozen state, as this could result is horizontal weak layer development within constructed fill embankments. Landscape slopes proposed across the development site should be limited to 5H:1V or flatter with proper drainage controls to prevent surficial erosion.

It is also recommended to consider methods such as notching the sideslopes of any cut slopes required prior to placing fill soils against a development cut slope. The notching with greatly improve bonding between the embankment fill and the underlying soil, reducing the risk of soil failure at the new/existing soil interface.

The global stability results refer to short-term stability during the initial stages of construction, which are generally considered to be the most critical case, due to pore pressure generation within overall development site grading, fill slope construction, and exposure of cut slopes prior to surficial vegetation taking root. The pore pressures will dissipate within the overall development site grading of fill slopes over the long-term and deep rooting of surface vegetation will protect against shallow surficial slumping/erosion, resulting in an improvement for the factor of safety against instability with the passage of time. The existing slopes are covered with mature vegetation; thus, these slopes, unless disturbed during development, have a strong surficial matting already intact for resistance to surficial erosion and sloughing.

The predominant soil strata utilized for SLOPE/W modelling was a silty clay surficial soil above a silty clay till overlying a highly weathered sandstone/mudstone bedrock (where encountered). The following soil parameters and groundwater conditions, which are interpreted to be reasonable and based on the most representative sections and existing slope conditions, have been assumed for the analysis as per *Table 6-1* below:

SOIL TYPE	STRATA THICKNESS	UNIT WEIGHT (KN/M³)	COHESION (KPA)	SOIL FRICTION ANGLE (⁰)
Stiff Silty Clay	≈3 m	18.0	1.0	26
Very Stiff Clay	≈9 m	19.0	2.0	28

TABLE 6-1: SLOPE STABILITY PARAMETERS

Notes: An assumed piezometric line was applied at the bottom of the natural drainage course/coulee within the stiff and very stiff silty clay layers. Groundwater level readings on October 28, 2016 indicated the boreholes in the area were dry.

These analyses assumed that the existing elevation contours in the area of the natural drainage course/coulee site are not to be significantly altered via grading/lot development particulars and all development is carried out in accordance with the geotechnical recommendations contained in this letter report. As per the three specific analyses carried out, the following minimum global stability factors of safety (FoS) as shown in Table 6-2 were obtained for the existing elevation contours across the slopes, as well as for the assumed regulatory setback of 6.0 m:

*exp

SECTION	MINIMUM FOS	MINIMUM FOS (6M SETBACK)
В	1.309	1.517
С	1.857	1.989
D	1.399	1.757

TABLE 6-2: MINIMUM FACTOR OF SAFETY

A minimum global stability factor of safety greater than 1.5 for an assumed regulatory setback of 6.0 m was achieved for the most representative existing elevation contours and development configurations/profiles (typical lot development) analyzed, as illustrated in the SLOPE/W outputs as *Figure 6*, *Figure 7*, and *Figure 8*.

As it is not recommended to develop right up to the crest of an existing slope with a gradient greater than 15%, especially those of significant vertical elevation difference, a development setback is recommended. An anticipated regulatory setback of 6.0 m was used in the slope stability analysis and was found to be acceptable with a minimum FOS of 1.5 or greater for all representative cross-sections. The slope crest can generally be defined as the transition of slope gradients from less than to steeper than 15%. The aforementioned minimum factors of safety will increase further upon adherence to the 6.0 m minimum development setback, as shown in **Table 6-2**.

NOTE: Absolutely no development should be undertaken within the recommended 6.0 m minimum development setback (i.e.: building structures, cut/fill grading changes, retaining walls, etc.).

Exp has no geotechnical concerns with the proposed development of Hawkwood Lands from a slope stability perspective, provided that the recommendations of this report are implemented as development stages progress. Final overall cut/fill development plans should be reviewed by a qualified geotechnical engineer to determine if any additional slope stability concerns have arisen as a result of final development particulars such as proposed site grading (exposed cut slopes or proposed embankment fill slopes), individual lot development, roadway alignments, etc. (as these aspects were unknown at this stage of the development planning).

7.0 Discussions and Recommendations

7.1 Geotechnical Considerations

7.1.1 General

Based on the information obtained during our geotechnical explorations, the site soil and groundwater conditions are considered suitable for support of the proposed development, provided that the recommendations outlined within this report are adhered to. The following presents some geotechnical concerns that are based on the subsurface exploration.

7.1.2 Frost Susceptibility

The existing native lacustrine clay and clay till soils above the bedrock were noted to be silty in composition. Based on the laboratory results and our experience with similar silty clay soils, these soils are considered to be highly frost susceptible. Thus, a high potential for frost heave in the presence of water and freezing temperatures should be anticipated.

**exp

The measures provided in **Section 7.7** should be implemented to mitigate frost heave concerns for the proposed building structures. Any pavement designs will be aimed at providing commonly accepted levels of deflection for the design, and not for the purpose of fully mitigating the frost heave potential of the subgrade soils; therefore, there is some risk of heaving within the roadways and routine maintenance works may be required.

7.1.3 High Plastic Clay Soils

As high plastic clay soils were also identified sporadically across the project site from the limited Atterberg limits tests conducted, it is recommended to conduct verification testing of all bearing/subgrade soils at the time of construction to identify if high plastic clay soils have been encountered. Specific geotechnical recommendations may be required if high plastic clay soils are exposed in specific development areas.

7.1.4 Erodible Soils

As discussed under **Section 7.1.2**, the existing native lacustrine clay and clay till soils above the bedrock were noted to have a high percentage of silt. Based on the laboratory results and our experience with similar silty clay soils, these materials are considered to be highly erodible.

7.1.5 Shallow Bedrock

As discussed under **Section 5.7**, relatively shallow bedrock was encountered within the proposed development site in localized areas during the subsurface exploration. The depth to bedrock from existing ground surface ranged between 2.7 m (BH16-8 and BH16-19) to 7.9 m (BH16-14), where encountered. The shallow bedrock may be more difficult to excavate and may be encountered during deep utility installation within localized areas. Further discussion on construction issues due to the shallow bedrock is provided in **Section 7.4** of this report.

7.2 Site Preparation and Grading

Prior to placing any fill materials, the surface topsoil-like layer and any existing organic-rich soil, uncontrolled fill, soft or water softened soil should be removed from areas to be filled. Qualified geotechnical personnel should then review the subgrade prior to fill placement.

A minimum 50 mm depth of scarification is recommended in areas subject to additional fill placement (prior to fill placement) once initial stripping of deleterious materials has been undertaken. The depth of scarification should be moisture conditioned in the same manner as required for the subsequent fill

All fill soil placement should adhere to the Backfill and Compaction Specification report section. Organic soils should not be buried or mixed with general engineered or structural fill soils within the proposed building footprints, as this may lead to undesirable fill settlements or methane generation. Organic soils could be used for general landscape areas and it is recommended they be compacted with a reasonable amount of effort. Their value as a growing medium would need to be evaluated by others. High plastic clay soils are not recommended to be placed within 2.0 m laterally of any below grade foundation walls. Full-time monitoring and compaction testing during fill placement is recommended for subgrade construction by a qualified geotechnical engineer or technician independent of the contractor.

For areas requiring structural support, the fill materials for the grading works should consist of either structural fill or general engineered fill as defined in **Section 7.3**. For all areas requiring structural support (building and road areas) in proposed fill areas, it is recommended that the exposed subgrade be graded to a 5H:1V gradient or flatter to mitigate differential settlements that may occur under any

key structures. Fill should not be placed on frozen subgrades and fill subgrade surfaces should not be allowed to freeze prior to placing subsequent lifts of fill. It is recommended that winter grading activities should be avoided.

Care should be taken to moisture condition, compact and document all grading activates. Deep fill assessments are recommended for all areas receiving 2.0m depth or more of fill.

7.3 Backfill Materials and Compaction

It is understood that some site grading may be required for the proposed development. The existing subsurface soils across the project site comprising the surficial silty clay (existing fill and native soils) within the upper approximate 4.0 m are suitable for use as general engineered fill on a limited basis. These soils, specifically the medium to high plastic clay soils, are considered to be highly frost susceptible and should not be used in areas exposed to frost penetration where subsequent frost heave is undesirable from a serviceability perspective. As well, areas prone to performance issues as a result of shrinkage or swelling potential of the medium to high plastic clay soils (e.g.: directly adjacent to below grade foundation walls, etc.) should also be avoided. Further verification testing is recommended during construction to identify if high plastic clay soils have been encountered. The proposed engineered fill soils for each specific construction aspect should be reviewed by the geotechnical engineer of record for the project site.

Moisture conditioning of the proposed backfill soils may be required prior to placement to achieve proper compaction results. The excavated site soils may be too wet or too dry at the time of construction; thus, moisture conditioning should be anticipated and carried out in a uniform manner to achieve a suitable moisture content range for the backfill soils during compaction.

All general engineered fill soils (cohesive or granular soils) are recommended to be compacted at a minimum Standard Proctor Maximum Dry Density (SPMDD) of 98% in maximum compacted lift thicknesses of 200 mm. All structural fill soils (well-graded granular soils with fines content generally less than 10% only) are recommended to be compacted at a minimum Standard Proctor Maximum Dry Density (SPMDD) of 100% in maximum compacted lift thicknesses of 200 mm. The site-specific excavated soils proposed for general engineered fill usage comprise of silty clay cohesive soils. Cohesive soils (silts, clays) should be uniformly moisture conditioned between the optimum moisture content (OMC) and 3% above the OMC prior to or during placement for compaction. Granular soils (sands, gravels) should be uniformly moisture conditioned between 3% below the OMC and 3% above the OMC prior to or during placement for compaction.

Structural fill may be required in special situations and should be used as directed by the geotechnical engineer. Structural fill can generally provide a higher bearing capacity than engineered fill and would be less settlement sensitive, and for example, may be desirable under building areas.

Where washing of fines is possible, fill material placed should be separated from coarser or finer backfill (comprising cohesive soils) material by a suitable geotextile.

Topsoil and soils containing organic manner or contamination should not be buried, mixed into, or used as general engineered fill soils. These soils should only be used as landscape fill soils due to their potential for methane generation and/or post-construction settlement potential. As well, all deleterious materials, contaminated soils (if encountered), and construction debris shall be removed prior to placement as a landscape fill soil.

**exp.

The use of excavated bedrock soils as engineered fill soils is not recommended as these soils are prone to degradation over time and may exhibit large differential settlements. These soils may be utilized as landscape fill.

It should be recognized that it is difficult to compact soils during the winter unless the fill soils are placed and compacted in an unfrozen condition and the working area is prevented from freezing. Therefore, it should generally be avoided if at all practical. Any frost penetration that may have occurred should be thawed, scarified, and recompacted prior to fill placement. Fill soils should be free of any snow or ice lenses, should not be placed on a frozen or snow covered subgrade, and not be allowed to freeze following placement.

7.4 Construction Excavation and Temporary Dewatering

The composition and consistencies of the surficial soils at the site are such that conventional hydraulic excavators should be able to excavate the surficial soils. Though the bedrock has been classified as "extremely to very weak" from a geotechnical perspective, when excavations encounter bedrock, pneumatic rock breakers or ripper teeth may be required to break the stronger sandstone/ mudstone bedrock layers and possible hard inclusions.

Temporary excavations (durations of less than 2 months) will be required for utility trenches and footing or pile cap preparation. The excavations for this project site are anticipated to be primarily within the existing clay soils in the upper 3.0 m to 5.0 m. Conventional construction equipment (i.e.: hydraulic excavators, hydrovac, etc.) should be able to remove these subsurface soils without difficulty.

For the typical excavations anticipated at the site, short-term trench and excavation sideslopes through the clay soils may be cut back at sideslopes no steeper than 1H (Horizontal):1V (Vertical) to a maximum depth of 5.0 m. Vertical sideslopes must not exceed 1.5 m in height for shallow excavations where sloping of the sideslopes are not feasible due to space restrictions (vertical sideslopes should not be facilitated if groundwater seepage is encountered). Flatter slopes up to 2H:1V or flatter will be required where sand layers, soft and wet/saturated soils, or poor quality fill are encountered (i.e.: groundwater and soil instability are anticipated within a depth of approximately 1.5 m from the existing site grades in localized areas). The stability of excavated trench walls decrease with time; therefore, it is best to minimize the length of time that service trenches are left open. The applicable sections in the Occupational Health and Safety Act must be adhered to.

Deep excavations may encounter groundwater infiltration and require dewatering. Any groundwater seepage or surficial water influx encountered in the temporary excavations should be handled with a conventional sump pump application consisting of a system of ditches or perimeter trenches leading to sump pits (low points) with pumps to dewater the excavations.

Prior to allowing workers to enter the construction excavations, a thorough inspection should be undertaken for evidence of instability (cracks, bulging, sloughing, seepage, etc). Any loose/unstable soils or cobbles/boulders should be scaled from the excavations prior to worker entry. All unsupported excavations should be monitored on a daily basis for slope movements such as slumping, bulging, etc. Any such movements should be reported to **exp** and remedial stability measures undertaken immediately.

Stockpiles of construction materials, excavated soil, construction equipment, or traffic should be kept away from the slope crest/edge by a distance equal to the depth of excavation. The vibration created from heavy machinery operations or compaction processes can destabilize a slope; hence, use of heavy machinery within close proximity to excavated slopes should be minimized. Temporary shoring design will be required for worker safety if the aforementioned safe excavation geometry cannot be facilitated (i.e.: due to proximity of adjacent property lines) or deeper excavations are required for construction aspects. **Exp** can provide these services as additional scope items, if requested.

7.5 Pipe Support

No difficulties are generally anticipated with regard to the pipe support; however, there could be some localized soft subgrade that may require some improvements for consistent pipe foundation support. Conventional methods for pipe support are considered feasible. Due to the presence of silty clay soils across the project site, **exp** recommends the use of compacted clay plugs at regular intervals. In addition, weep holes to direct groundwater into storm manholes should be used in these silty clay soils as per the City of Calgary detail (Sheet 59, file number 452.1005.006 entitled *Clay Plugs and Weeping Holes at Storm Manholes*). This is to prevent erosion of the silts/clays and possible future subsidence due to loss of fine grained soils into the 40 mm washed drainage gravel. **Exp** should be notified during construction to provide on-site recommendations for the frequency of the clay plugs in the pipe zone.

7.6 Weeping Tile

Exp recommends subsurface weeping tile be installed for all below grade structures. The subsurface weeping tile should consist of minimum 100 mm diameter perforated PVC pipe and should be embedded in City of Calgary 40 mm diameter washed drainage gravel wrapped with a suitable filter fabric. The weeping tile should drain to a storm sewer or sump pump to overland drainage, subject to the approval of Rocky View County (the County).

7.7 Foundations

Based on the results of the geotechnical exploration, conventional strip and spread footings may be used for residential house structures within this development. It is anticipated that a factored geotechnical bearing resistance of 100 kPa should be attainable across the project site for the proposed residential structures.

Bearing certificates should be prepared by a qualified geotechnical engineer for all footings placed on fill or native soil. The surficial silty clay soils within the proposed development site may require some over-excavation (if soft saturated soils are encountered) and replacement with structural fill or engineered fill soils, to prepare adequate bearings surfaces.

All shallow foundation elements should be constructed on the undisturbed very stiff native clay till soils. Any pockets of existing fill soils, soft/wet/disturbed soils, or otherwise unsuitable bearing soils exposed at the foundation depth shall be subexcavated to acceptable bearing conditions and replaced with compacted structural fill (well-graded granular soils as per the Backfill and Compaction Specifications section of this report). The structural fill should extend laterally beyond the foundation footprint equal to the depth of subexcavation required. Alternately, the footings may be stepped down or the subexcavated depth below the proposed footing elevation may be backfilled with a low strength leancrete concrete.

Open excavations should be protected from any influx of precipitation from harsh weather and/or poor site grading prior to structural fill placement, concrete/leancrete placement, and/or backfill placement adjacent to the footings (i.e.: positive site grading away from open footing excavations and temporary covers are simple methods to consider prior to complete footing construction and backfill placement around the footings up to site grades, localized ditches and sumps to direct water away from footing

layouts, etc.). The exposed footing excavations should not be allowed to dry excessively or freeze prior to footing construction and cover fill placement up to final site grades. As well, it is not recommended to allow influx/accumulation of water adjacent to footings post-structural fill or concrete placement. Any standing water on the exposed bearing surfaces should be removed immediately. Additional bearing observations may be required if footing construction and structural fill and/or post-concrete placement is delayed and inclement weather arises or if the exposed bearing soils are prone to heavy disturbance during footing construction. It is recommended to protect the exposed bearing subgrades with an approximately 50 mm thick mudslab (leancrete concrete) after bearing observations have been conducted, if the foundation elements are not promptly constructed after excavation or unfavorable exposure conditions are anticipated.

Footings within heated structures should be founded at a depth of 1.4 m below grade and for unheated structures at a depth of 2.1 m below grade to protect against the effects of frost heaving. Appropriately designed ridged styrofoam insulation can be considered to reduce footing embedment depth. Exterior foundations such as deck footings and wing walls require 2.1 m of soil cover or equivalent insulation for frost protection.

Final grades around all permanent structures should be graded away from the foundation walls at a minimum 2 percent gradient. Downspout extensions should be used to direct roof water sufficiently away from the foundation walls.

7.8 Seismic Class

The seismic response of the site is classified according to the National Building Code of Canada 2010 (NBCC), which categorizes the soil conditions into six types - Class 'A' to 'F'. This classification is based on the average shear wave velocity, energy-corrected SPT N values, or undrained shear strength over the top 30 m of the soil profile.

The site may be categorized as Class 'D' according to the NBCC 2010. Shear wave velocity data was not obtained from this site, and borings were not advanced to 30 m depth. Thus, the seismic classification is based on the SPT 'N' values within the depths drilled at the site, as well as on the assumption that the soil strength below the borehole termination depths is at least equivalent or greater.

7.9 Concrete Type

Eight (8) soil samples were selected at various depths for soluble sulphate testing to determine the water-soluble sulphate content of the subsurface soils. These tests yielded negligible to moderate degree of sulphate exposure. Therefore, it is recommended that the Canadian Standards Association (CSA) requirement of A23.1-09, **Table 2**, for Class S-3 exposure is adhered to as a minimum concrete specification. All concrete in contact with soils at this site can be made from CSA Type HS or HSb (Sulphate Resistant) Portland cement possessing a minimum compressive strength of 30 MPa at 56 days, a maximum water/cement ratio of 0.50, and air entrainment of 4-7% for concrete with nominal maximum coarse aggregate sizes of 14-20 mm. The structural engineer should make an independent determination of concrete specification requirements based on specific design function.

Any imported fill to be placed in contact with concrete should also be tested for water-soluble sulphate content and the above recommendations reevaluated.

7.10 Further Work and Geotechnical Review

Design recommendations presented in this report are based on the assumption that an adequate level of field reviews and testing will be provided during construction and that construction will be carried out

by a suitably qualified contractor experienced in underground utility installation and earthworks. An adequate level of field review is considered to be:

- For earthworks related to building pads, roads and paved areas full time monitoring and compaction testing.
- For underground utility installation and backfilling full time monitoring and compaction testing.

All geotechnical field reviews and testing should be carried out by a qualified geotechnical engineer or technician independent of the contractor. The purpose of providing an adequate level of field reviews is to check that recommendations, based on the data obtained at discrete borehole locations, are relevant to other areas of the site and confirm that the project requirements are adhered to.

8.0 Closure

Recommendations presented herein are based on a geotechnical evaluation of the findings at the five boreholes advanced at the site. If conditions other than those reported are noted during subsequent phases of the project, **exp** should be notified and given the opportunity to review the current recommendations in light of any new findings.

Soil conditions, by their nature, can be highly variable across a site. Recommendations presented herein may not be valid if an adequate level of field reviews and testing is not provided during construction, or if relevant building code requirements are not met.

A contingency amount should be included in the construction budget to allow for the possibility of variations in soil conditions, which may result in modification of the design, and/or changes in construction procedures. Contractors should make their own assessment of subsurface conditions and select the construction means and methods most appropriate to the site conditions. This geotechnical report should not be included in contract specifications without suitable qualifications and prior review by **exp**. However, the geotechnical report may be used as an attachment to contract specifications, for information purposes only.

This report has been prepared for the exclusive use of Highfield Land Management Inc. and their agents for specified application of this project. It has been prepared in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made.

Client: Highfield Land Management Inc. Project Name: Hawkwood Lands Project Number: CGY-00092050-00 Date: November 18, 2016

Appendix A – Interpretation and Use of Study & Report

INTERPRETATION & USE OF STUDY AND REPORT

1. STANDARD OF CARE

This study and Report have been prepared in accordance with generally accepted engineering consulting practices in this area. No other warranty, expressed or implied, is made. Engineering studies and reports do not include environmental consulting unless specifically stated in the engineering report.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report which is of a summary nature and is not intended to stand alone without reference to the instructions given to us by the Client, communications between us and the Client, and to any other reports, writings, proposals or documents prepared by us for the Client relative to the specific site described herein, all of which constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. WE CANNOT BE RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF THE REPORT

The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose that were described to us by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document are only valid to the extent that there has been no material alteration to or variation from any of the said descriptions provided to us unless we are specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT OUR WRITTEN CONSENT. WE WILL CONSENT TO ANY REASONABLE REQUEST BY THE CLIENT TO APPROVE THE USE OF THIS REPORT BY OTHER PARTIES AS "APPROVED USERS". The contents of the Report remain our copyright property and we authorise only the Client and Approved Users to make copies of the Report only in such quantities as are reasonably necessary for the use of the Report by those parties. The Client and Approved Users may not give, lend, sell or otherwise make the Report, or any portion thereof, available to any party without our written permission. Any use which a third party makes of the Report, or any portion of the Report, are the sole responsibility of such third parties. We accept no responsibility for damages suffered by any third party resulting from unauthorised use of the Report.

5. INTERPRETATION OF THE REPORT

- a. Nature and Exactness of Descriptions: Classification and identification of soils, rocks, geological units, contaminant materials, building envelopment assessments, and engineering estimates have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature and even comprehensive sampling and testing programs, implemented with the appropriate equipment by experienced personnel, may fail to locate some conditions. All investigations, or building envelope descriptions, utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarising such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and all persons making use of such documents or records should be aware of, and accept, this risk. Some conditions are subject to change over time and those making use of the Report should be aware of finis possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. Where special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b. Reliance on Provided information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to us. We have relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in the report as a result of misstatements, omissions, misrepresentations or fraudulent acts of persons providing information.
- C. To avoid misunderstandings, exp Services Inc. (exp) should be retained to work with the other design professionals to explain relevant engineering findings and to review their plans, drawings, and specifications relative to engineering issues pertaining to consulting services provided by exp. Further, exp should be retained to provide field reviews during the construction, consistent with building codes guidelines and generally accepted practices. Where applicable, the field services recommended for the project are the minimum necessary to ascertain that the Contractor's work is being carried out in general conformity with exp's recommendations. Any reduction from the level of services normally recommended will result in exp providing gualified opinions regarding adequacy of the work.

6.0 ALTERNATE REPORT FORMAT

When **exp** submits both electronic file and hard copies of reports, drawings and other documents and deliverables (**exp**'s instruments of professional service), the Client agrees that only the signed and sealed hard copy versions shall be considered final and legally binding. The hard copy versions submitted by **exp** shall be the original documents for record and working purposes, and, in the event of a dispute or discrepancy, the hard copy versions shall govern over the electronic versions. Furthermore, the Client agrees and waives all future right of dispute that the original hard copy signed version archived by **exp** shall be deemed to be the overall original for the Project.

The Client agrees that both electronic file and hard copy versions of **exp**'s instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except **exp**. The Client warrants that **exp**'s instruments of professional service will be used only and exactly as submitted by **exp**.

The Client recognizes and agrees that electronic files submitted by **exp** have been prepared and submitted using specific software and hardware systems. **Exp** makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

Client: Highfield Land Management Inc. Project Name: Hawkwood Lands Project Number: CGY-00092050-00 Date: November 18, 2016

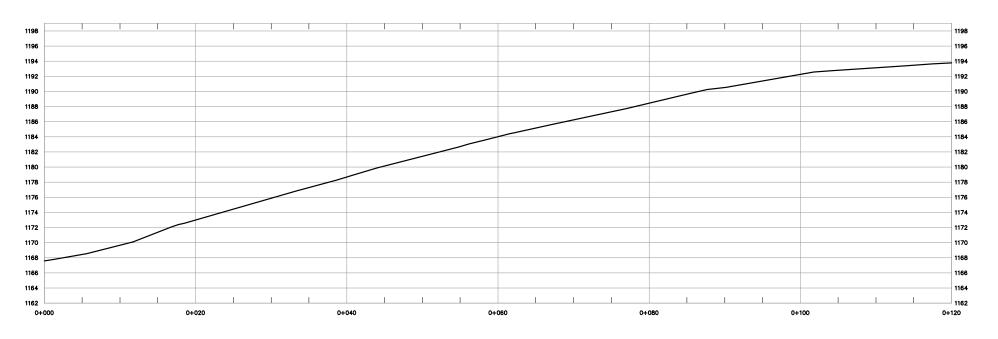
Appendix B – Figures

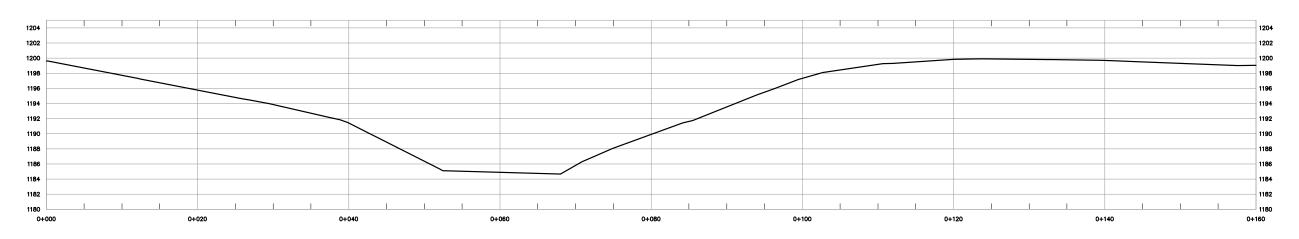
Plot Date: Nov 17, 2016 - 01:38:13pm Plotted 0:0037 00092055 0060 Project Execution/2

DATE: 2016.08.25

SCALE: NTS

FIGURE NO.:


SITE LOCATION PLAN

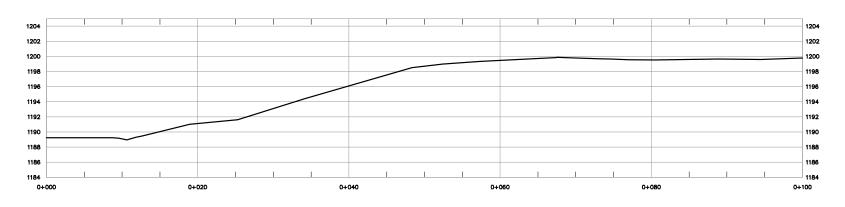


<u>Section A</u>

<u>Section B</u>

LEGEND:

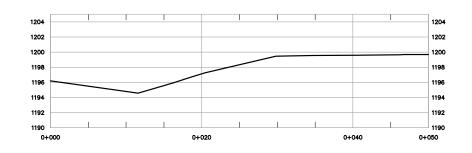
- ORIGINAL GROUND


CROSS SECTIONS (A and B)

PROJECT NO.: CGY-00092055-00 DATE: 2016.11.15



SCALE: 1:500

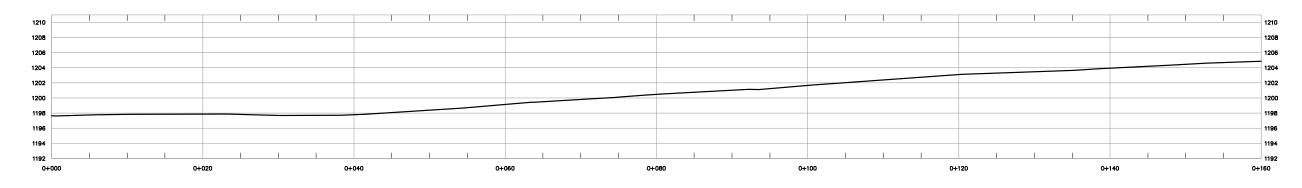


<u>Section E</u>

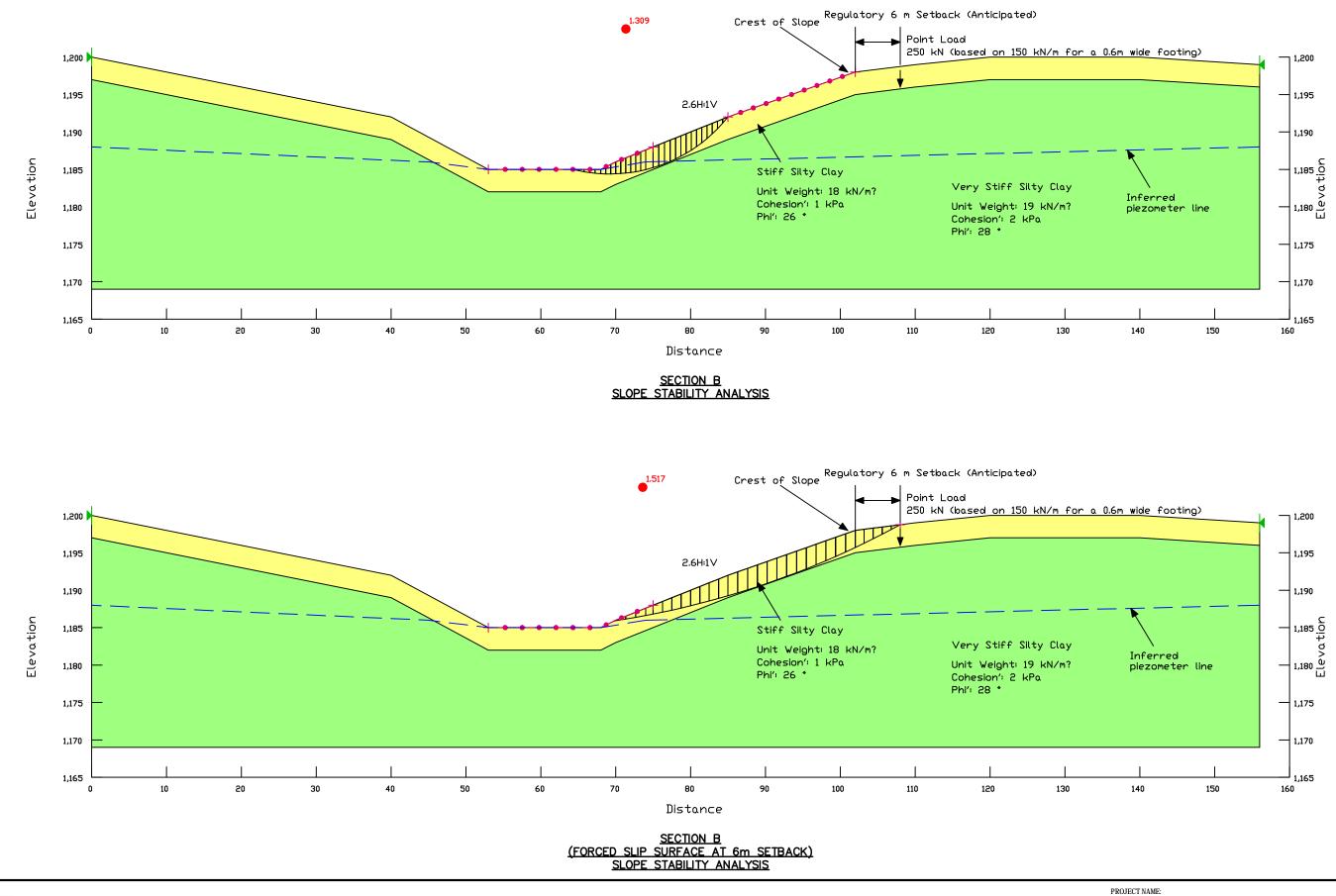
LEGEND: ORIGINAL GROUND

CROSS SECTIONS (C, D, and E)

PROJECT NO.: CGY-00092055-00 DATE: 2016.11.15


 $\overset{\text{FIGURE NO.:}}{04}$

SCALE: 1:500


- ORIGINAL GROUND

CROSS SECTIONS (F and G)

PROJECT NO.: CGY-00092055-00 DATE: 2016.11.15

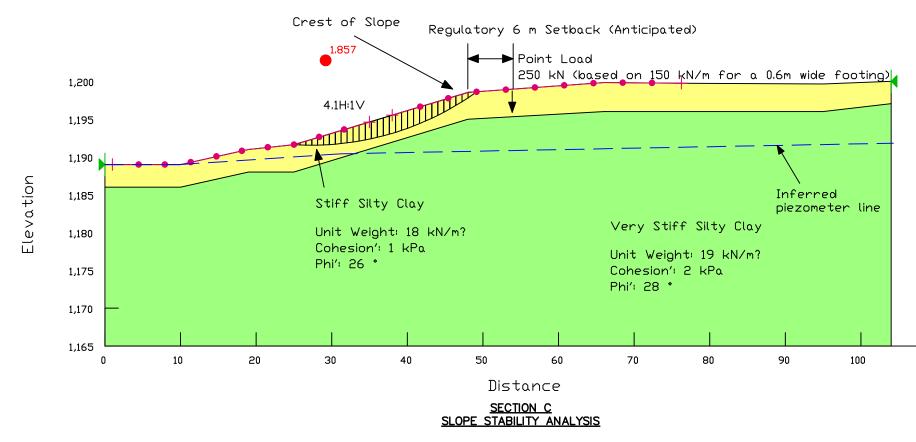
SCALE: 1:500

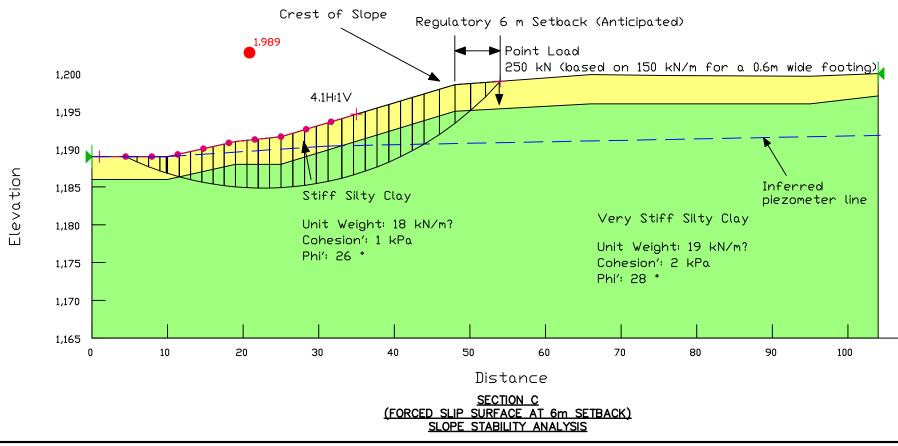
let Date: Nov 17, 2016 – 02:10:36m Platted byMeszarafi 25:051-0092059-00/60 Projet Execution/3 ReportAseterinica/Signe Stability/CGY-00032056-00-Stability Sections.deg

*exp

EXISTING GROUND SLOPE STABILITY SECTION B

DATE: 2016.11.15


SCALE: 1:500

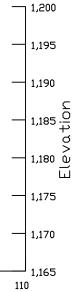

FIGURE NO .:

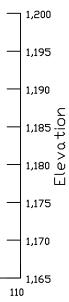
06

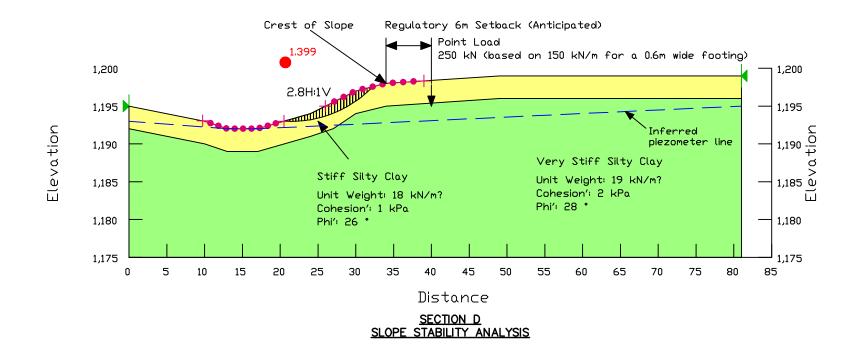
PROJECT NAME: HAWKWOOD LANDS

PROJECT NO.: CGY-00092055-00

ok Noti-Jones Monta Jone - Justi Likelyan Parket Bryaketoken ok Noti-Dobozotis-Onloa Projett Exerction.), Report Newtonical/Sege


EXISTING GROUND SLOPE STABILITY SECTION C


PROJECT NO.: CGY-00092055-00


DATE: 2016.11.15

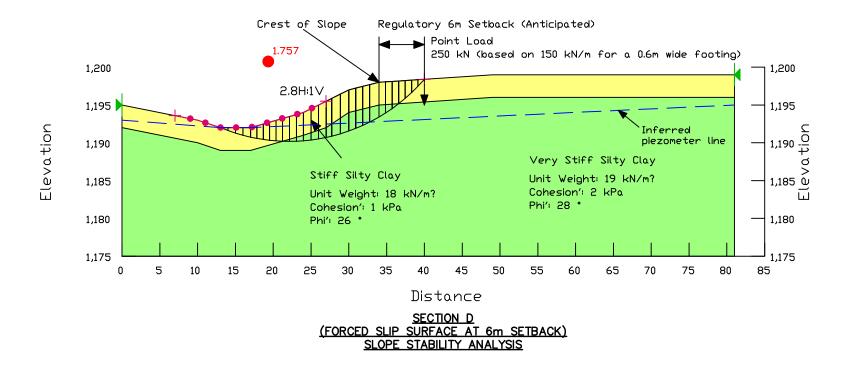

SCALE: 1:500

FIGURE NO.:

EXISTING GROUND SLOPE STABILITY SECTION D

PROJECT NO.: CGY-00092055-00

DATE: 2016.11.15

FIGURE NO.:

SCALE: 1:500

Client: Highfield Land Management Inc. Project Name: Hawkwood Lands Project Number: CGY-00092050-00 Date: November 18, 2016

Appendix C – Borehole Logs

1	е	exp Services Inc.						RECORD	of Borei	HOLE : BH16-01 PAGE 1 OF 1
PRC	JECT	NUMBER CGY-00092055-00			_	CL	IENT _Highfield Land I	Management Inc.		
PRC	JECT	NAME _ Hawkwood Lands			_	PR		Calgary, Alberta		
DRII	LING	DATE 2016-10-20			_	во	OREHOLE LOCATION			
DRI	LING	CONTRACTOR Earth Drilling Co. Ltd.					EVATION 1225.05m			
		METHOD Solid Stem Auger			-	GR	ROUND WATER LEVEL		DRILLING	
		NT TYPE Truck Mounted Auger Drill			_				RILLING Dry	
		BY CS CHECKED BY MT			_				ING 28/10/201	
	-			9	AMPLE	2	SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
D E P	S T		ELEV.			%	BLOWS/0.3m	(kPa) (kPa)	(%)	Casing Top Elev: m
P T H (m)	R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m 20 40 60 80	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold ● 0 40 80 120 160	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL 20 40 60 80	
	<u></u> .	TOPSOIL, some clay, trace silt, sandy, some organics, dark brown,	1224.7	1	GB					Bentonite
- 1		moist CLAY, silty, trace sand, medium plasticity, stiff, greyish brown, damp to moist	0.3	2	GB				-18 (2)	
- 2		CLAY (TILL), silty, trace to some	1223.2	3	SS	100	12	335	14 Ω	
- 3		sand, trace rounded to sub-rounded gravel, medium plasticity, stiff to very stiff, brown, moist -some coarse gravel, occasional coal fragments		4	GB					Cuttings
-		-some angular gravel fragments, occasional cobbles		5	SS	100	50/140mm		11 O	
- 4		-some gravel		6	GB					
- 5		-trace to some gravel, hard		7	SS	100	36	431 ⊛		Sand
- 5		-some gravel		8	GB				7 0	- Screen
<u>6</u>							30	431_		
-		Bottom of hole at 6.6m.	1218.5	9	SS	30		431. O	· · · · · · · · · · · · · · · · · · ·	

PRO DRIL	JECT LING	NAME Hawkwood Lands DATE 2016-10-20			_	PR BC	IENT Highfield Land OJECT LOCATION	Calgary, Alberta		
		CONTRACTOR Earth Drilling Co. Ltd. METHOD Solid Stem Auger					EVATION <u>1217.57m</u>			
		TTYPE Truck Mounted Auger Drill			_	Gr				
		BY CS CHECKED BY MT	-		_				ING 28/10/201	
				5	SAMPLE	S	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM
D E	S T		ELEV.			%		•		Casing Top Elev: m
P T H (m)	R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold ● O 40 80 120 160	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL PL MC LL 20 40 60 80	-
	<u>x 17</u> 17 <u>x 1</u>	TOPSOIL, some clay, trace silt, sandy, some rootlets/organics, dark brown, moist	1217.1	1	GB		20 40 60 80			Bentonite
1		CLAY (TILL), silty, trace fine rounded to sub-rounded gravel, trace sand, trace sulphates, medium plasticity, firm, greyish brown, moist	0.5	2	GB				22 O	
		CLAY, silty, trace sand, trace	1216.0				· · · · · · · · · · · · · · · · · · ·		23	
2		sulphates, medium plasticity, firm to stiff, brown, moist -Sulphate Content <0.1%	1.0	3	SS	100			29 29	
3		-soft Grain Size Analysis: Gravel = 0.0% Sand = 2.2% Silt = 84.1%		4	GB					
		Clay = 13.7% -minor oxidation		5	SS	100	•9•		32 ©	Contings
4				6	GB					
5		CLAY (TILL), silty, some sand, trace rounded to sub-rounded gravel, medium plasticity, stiff, possible	1213.0 4.6	7	SS	100	13	335 •	16 O	
		bedrock fragments, minor oxidation		8	GB				14 O	
<u>6</u>		-boulder/cobble, sandy -bouncing SPT				-				Sand
		-		9	SS	-			16	
<u>7</u>				10	GB				0	
8		-very stiff		11	SS	50	24	335 O		- Screen
•		-occasional cobbles		12	GB				14 ©	
9		-occasional silt layers		13	SS	100	30		20 ©	

10	е	XD. exp Services Inc.						RECORD	OF BOREH	HOLE : BH16-03 PAGE 1 OF 1
PRO	JECT	NUMBER _ CGY-00092055-00				CLI	ENT Highfield Land	Management Inc.		
		NAME Hawkwood Lands			-		OJECT LOCATION			
		DATE 2016-10-20			_		REHOLE LOCATION			
		CONTRACTOR Earth Drilling Co. Ltd.				ELE	EVATION 1216.27m			
		METHOD Solid Stem Auger				GR	OUND WATER LEVEL		DRILLING	
EQL	JIPME	TTYPE			_			T AT END OF D	RILLING Dry	
LOG	GED I	BY CS CHECKED BY MT						${ar Y}$ AFTER DRILL	ING 28/10/201	6 Dry
D	s			S	AMPLE		SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m
	T		ELEV.	£		% ≻		•		
E P T H	R A T	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa)	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT	-
(m)	A			ž		REC	لم 20 40 60 80	Peak Remold	PL MC LL 20 40 60 80	
-	<u>x¹ 1₇</u> 1 ₇ x ¹ 1	TOPSOIL, some clay, silty, sandy, some organics, dark brown, moist Grain Size Analysis:	1215.8	1	GB					
		Gravel = 2.3% Sand = 51.0% Silt = 33.6%	0.5	2	GB				26 Ω	
- 1		Clay = 13.7% CLAY, silty, trace to some sand, trace sulfates, medium plasticity, firm, light brown, moist								
- 2		-stiff, trace fine to coarse sub-rounded gravel		3	SS	100	9.	192	27 	Cuttings
		-greyish brown, occasional coal fragments		4	GB				24 ①	SC SC Sand
- 3			1213.1				50			
-	<u> </u>	SANDSTONE, extremely weak to very weak, highly to moderately weathered, brown, dry	3.2	5	SS	100	50/1 3 0mm			- Screen
-	· · · · · · · · · · · · · · ·	weathered, blown, dry	1212.3	6	GB					
		Refusal at 4.0m.								

					_		IENT Highfield Land			
		NAME Hawkwood Lands			_					
		DATE _2016-10-20 CONTRACTOR _Earth Drilling Co. Ltd.			_		REHOLE LOCATION EVATION			
		METHOD Solid Stem Auger			_				DRILLING	
		IT TYPE Truck Mounted Auger Drill			_	GF	COND WATER LEVEL		RILLING Dry	
		BY CS CHECKED BY MT			_				ING 28/10/201	
					SAMPLE		SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
D E	S T		ELEV.			%	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
⊃ F H n)	R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	ECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL	-
,	· · · · · ·	TOPSOIL, some clay, some silt,		1	GB	REC	20 40 60 80			
		sandy, some organics, dark brown,	1183.5 0.3	'	GD					Bentonite
1		CLAY, silty, trace to some sand, trace sulphates, medium plasticity, stiff, brown, moist		2	GB					
		-occasional grey mottling, occasional quartz crystals from 1.5 to 2.4m		3	SS	100	14	335	23 	
2		-sand seams -Sulphate Content = 0.3%		4	GB					
3		-some sand to sandy, minor oxidation, occasional grey mottling		5	SS	100			30 	Cuttings
4		-medium to high plasticity, occasional quartz crystals Grain Size Analysis: Gravel = 5.7%		6	GB				26 20 <mark>1⊖ 1</mark> 50	
5		Sand = 25.7% Silt = 57.6% Clay = 11.0% -trace fine sand, very stiff		7	SS	100	16	383	21 3	
6		-occasional sandy seams -occasional trace coarse rounded gravel		8	GB					C C C C C C C C C C C C C C C C C C C
-		-occasional silt seams and lenses		9	SS	-	17		.16. 	
		-grey				-				
7		-occasional coal fragments CLAY (TILL), silty, some sand, trace	1176.5	10	GB					
Q		occasional cobbles, medium plastic, very stiff, greyish brown, moist	7.3	11	SS	100	25	383	19 	- Screen
		-trace bedrock fragments		12	GB					
9		-occasional silt and fine sand seams		13	SS	100	24		23. O	

PRC	JECT	NUMBER CGY-00092055-00 NAME Hawkwood Lands DATE 2016-10-20			_	PR	IENT Highfield Land OJECT LOCATION (REHOLE LOCATION	Calgary, Alberta		
		CONTRACTOR Earth Drilling Co. Ltd.			_		EVATION1204.99m			
									DRILLING	
QU	IPME	NT TYPE Truck Mounted Auger Drill			_			T AT END OF D	RILLING Dry	
.00	GED I	BY CS CHECKED BY MT						${ar Y}$ AFTER DRILL	.ING 8.9m 28/10/2	016
				Ş	SAMPLE	S	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM
D E	S T					%		(((((((((((((((((((Casing Top Elev: m
Ρ	R	SOIL DESCRIPTION	ELEV. DEPTH	ËR	ш		20 40 60 80	100 200 300 400	20 40 60 80	1
T H	A T		(m)	NUMBER	ТҮРЕ	DVE	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	
m)	Å			٦	'	RECOVERY		Peak Remold	PL MC LL	
					-	2	20 40 60 80	40 80 120 160	20 40 60 80	
		TOPSOIL, some clay, trace to some silt, sandy, some organics, dark /	1204.8	1	GB					Bentonite
		brown, moist	0.2		1					
		CLAY, silty, trace sulphates, medium plasticity, firm to stiff, light brown,		2					26	
1		damp to moist		2	GB					
-					1					
					1					
		-stiff, moist			1		13	192 ©	29	
2				3	SS	100	· · · · · · · · · ·			
<u>-</u>	1				1	1			<u>21</u>	
		-trace rounded to sub-rounded gravel		4	GB					
		and cobbles			1					
					1					
3			1201.0		1	<u> </u>				Cuttings
		CLAY (TILL), silty, some sand, trace	1201.8 3.2	5	SS	100	13	· · · · · · · · · · · · · · · · · · ·		
	H/A	rounded to sub-rounded gravel.	J.Z	5						
		medium plasticity, stiff, light brown, moist		-					17	
4		-trace to some gravel		6	GB				Ċ	
					1					
	W				1					
	Ű//				1		27	335		
5			1200.1	7	SS	100				
-	\mathbb{N}	MUDSTONE, extremely weak, highly weathered, minor to major oxidation,	4.9		1				17	
	\mathbb{X}	light brown, some grey mottling, dry		8	GB				Ó	
	M	to damp			1					
_	\mathbb{K}/\mathbb{A}				1					RF RF
<u>6</u>))))									Sand
	\mathbb{K}	-crumbled		9	SS	100	57			
	\mathbb{X}			5						
									9	
7	\mathbb{X}			10	GB				Ω	
	M				1					
	\mathbb{K}				1					
))))						66			- Screen
3	\mathbb{K}			11	SS	100		· · · · · · · · · · · · · · · · · · ·		
-	\mathbb{X}	-very weak, moderately weathered			1				42	
	\mathbb{K}	,,,		12	GB				13	
	\mathbb{X}									[2] [1]
~	X									
9	K	Ā			1					
-			1		1	1	20	1		·······
-	X	-extremely weak, brown								
_		-extremely weak, brown		13	SS	100				

Refusal at 9.9m.

	е	exp Services Inc.						RECORD	OF BOREH	HOLE : BH16-06 PAGE 1 OF 1
PRO	JECT	NUMBER CGY-00092055-00				CL	IENT Highfield Land	Management Inc.		
		NAME Hawkwood Lands			-					
		DATE 2016-10-20			-		REHOLE LOCATION	<u>u</u> 11		
		CONTRACTOR _Earth Drilling Co. Ltd.			_		EVATION 1209.41m		<u> </u>	
		METHOD Solid Stem Auger			-		OUND WATER LEVEL		DRILLING	
		NT TYPETruck Mounted Auger Drill			-	0.1				
		BY CS CHECKED BY MT			-				ING 28/10/2016	
200						2	SPT N VALUE		FINES CONTENT	WELL DIAGRAM
D	s			S	AMPLE	S	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
E P	T		ELEV.			%		۲		
P T	R A	SOIL DESCRIPTION	DEPTH	NUMBER	ш	RECOVERY	20 40 60 80	100 200 300 400	20 40 60 80	4
н	Ť		(m)	IME	түре	NE N	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	
(m)	А			ž		ŬШ	<u>ل</u> ر	Peak Remold	PL MC LL	
						R	20 40 60 80	40 80 120 160	20 40 60 80	
F	<u>, 1,</u>	TOPSOIL, some clay, sandy, trace silt, some rootlets, dark brown, moist	1209.2	1	GB					
È .	XX	CLAY, silty, trace fine sand, medium	0.2							- Bentonite
F	XX	plasticity, stiff, light brown, moist						400	29	
È .	XX			2	GB			192	0	
<u>_1</u>	XX						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
È .	XX							• • • • • • • • • • • • • • • • • • • •		
È .	XX									
F	XX	-occasional fine to medium sand							26	
F	XX	seams		3	SS	60		287 •	Δ	
<u>_2</u>	XX									
F	X				~ ~				31	
F	XX	-trace coarse rounded gravel from		4	GB				20	Cuttings
F	XX	2.7 to 3.3m, medium to high plasticity Grain Size Analysis:								
F	XX	Gravel = 0.0%								
- 3	XX	Sand = 4.4% Silt = 84.2%						······································		
F	XX	Slit = 84.2% Clay = 11.5%		5	SS	80	9	287. •	29	
F	XX	-minor oxidation		э	33	00				
F	XX									
F.	XX			6	GB					
-4	XX	-occasional sand seams with trace gravel from 3.0 to 4.5m					· · · · · · · · · · · · · · · · · · ·			129 129
F	XX	g								
F	XX		1204.8							Sand
F	<i>[]]]</i>	CLAY (TILL), silty, some sand, trace	4.6				26	· 335 •	16	
F	H	sub-rounded sub-angular gravel,	1204.5	7	SS	100		••••	\odot	
- 5	\mathbb{X}	medium plastic, very stiff, occasional coal fragments, oxidation, brown, dry	4.9							
F	\gg	MUDSTONE, extremely weak, highly						• • • • • • • • • • • • • • • • • • •	17	
F	\mathbb{K}	weathered, light brown, dry		8	GB				O.	- Screen
E	\gg									
É	\mathbb{K}									
Fe	\gg									
E	\mathbb{K}				~~~	100				
F	$\rangle\rangle\rangle$		1202.9	9	SS	100				
	V///	Bottom of hole at 6.6m.								

0.00	е							RECORD	of Boreh	HOLE : BH16-07 PAGE 1 OF 1
		NUMBER CGY-00092055-00				CI	IENT Highfield Land	Management Inc		
		NAME Hawkwood Lands			-					
		DATE 2016-10-19			_		REHOLE LOCATION			
		CONTRACTOR _Earth Drilling Co. Ltd.			_		EVATION 1213.57m			
		METHOD Solid Stem Auger			_		ROUND WATER LEVEL		DRILLING	
		NT TYPETruck Mounted Auger Drill			-	0.			RILLING Dry	
		BY CS CHECKED BY MT			-			-	ING 28/10/2010	
				9	AMPLE	\$	SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
D	s			3			BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
E P	Т		ELEV.	æ		۲ %		•		
T	R A	SOIL DESCRIPTION	DEPTH	NUMBER	түре	RECOVERY	20 40 60 80 DYNAMIC CONE	100 200 300 400 FIELD VANE	20 40 60 80 PLASTIC & LIQUID LIMIT	-
H	T		(m)		Υ	l õ	BLOWS/0.3m	SHEAR (kPa)	MOISTURE CONTENT	
(m)	A			2		REC	<u>ل</u> م	\bullet \circ	PL MC LL 20 40 60 80	
╞──	<u>, 17</u> .	TOPSOIL, some clay, trace silt,	1213.4	1	GB		20 40 60 80	40 80 120 160		
F		─ sandy, some rootlets, dark brown, /	0.2		00					
F	\otimes	CLAY (FILL), silty, trace sand,	0.2					• • • • • • • • • • • • • • • • • • • •		
F	\otimes	medium plasticity, light brown, damp		2	GB				20 Ö	
F1	\otimes	to moist -Sulphate Content <0.1%		2	GD					
F	\otimes	-Suphate Content <0.1%					••••••••••••••••••	••••••••••••••••••••••••		
E	\bigotimes									
F	\bigotimes						5			
F			1211.7	3	SS	100				
<u>_2</u>	<u>711</u>	TOPSOIL, trace organics and	1.8					· · · · · · · · · · · · · · · · · · ·		
È.	tat	rootlets, dark brown, moist CLAY, silty, trace sand, medium	1211.4 2.1		0.5				25 众	
F		plasticity, stiff, brown, moist	2.1	4	GB			· · · · · · · · · · · · · · · · · · ·		
F		-grey								Cuttings
E										
-3		stiff to your stiff, approximal silt								
F		-stiff to very stiff, occasional silt seams		5	SS	100			20 	
F		-minor oxidation, brown						· · · · · · · · · · · · · · · · · · ·		
F										
F4		-trace gravel		6	GB					
F										
E										
F										
F				7	SS	100		239	22	
- 5				<u>'</u>	00	100				
È .										
F				8	GB					- Screen
F										Sand
Ē										
6			1207.4							
F		CLAY (TILL), silty, trace to some	6.1	9	SS	100	16	287. •	15 O	
F		sand, trace gravel, medium plasticity, very stiff, brown, moist	1207.0	J	33			•		
		Bottom of hole at 6.6m.								

1	е							RECORD	of Boreh	IOLE : BH16-08 PAGE 1 OF 1
	IECT	NUMBER CGY-00092055-00				CI	IENT Highfield Land I	Managamant Inc		
		NAME Hawkwood Lands			_		OJECT LOCATION (
		DATE 2016-10-20			_		REHOLE LOCATION			
		CONTRACTOR _Earth Drilling Co. Ltd.			-		EVATION 1237.11m			
		METHOD Solid Stem Auger			_		OUND WATER LEVEL		DRILLING	
		NT TYPE Truck Mounted Auger Drill			-	01			RILLING Dry	
		BY CS CHECKED BY MT			-			-		
200				6	AMPLE	0	SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
D	s			5	AMPLE	5	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
E P	Т		ELEV.	~		%	▲	\odot		
P T	R A	SOIL DESCRIPTION	DEPTH	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE	100 200 300 400 FIELD VANE	20 40 60 80 PLASTIC & LIQUID LIMIT	
н	Т		(m)	ΜΩ	Σ	∑	BLOWS/0.3m	SHEAR (kPa)	MOISTURE CONTENT	
(m)	Α			z		L L L L	<u>ل</u>	Peak Remold	PL MC LL	
	N 17.	TOPOOL				ш.	20 40 60 80	40 80 120 160	20 40 60 80	
-	· <u>···</u> ·	TOPSOIL, some clay, trace silt, sandy, trace cobbles, some organics,	1236.9	1	GB					
_	XX	dark brown, moist	0.3							
_	XX	CLAY, silty, trace sulphates, medium plasticity, stiff, brown with oxidation,							19	
- 1	XX	moist		2	GB				Ö	- Bentonite
'	XX									
_	XX									
	XX									
-	XX	-very stiff -Sulphate Content <0.1%		3	SS	50	29 ••••	• • • • • • • • • • • • • • • • • • • •		
2	XX	-suprate content <0.1% -grey, minor oxidation, dry		3	33	50				
-	XX							• • • • • • • • • • • • • • • • • • • •	16	
-	XX	-light brown, dry		4	GB				Q	29. 193
_	XX	-light brown, dry								
	XX		1234.4							
- 3	X	MUDSTONE, completely weathered to residual soil, extremely weak, trace	2.7					· · · · · · · · · · · · · · · · · · ·		Cuttings
-	<u>U</u>]]	to some sand, greyish brown, dry to		-			50/150mm		14	
-	X	damp		5	SS	90			Ô	
-	<u>U/</u>							• • • • • • • • • • • • • • • • • • • •		
-	X			6	GB					
_4	\langle / \rangle							· · · · · · · · · · · · · · · · · · ·		
	X									
-	¥]]									Sand
_	\gg						50/75mm	· · · · · · · · · · · · · · · · · · ·	12	
- 5	X//			7	SS	100		· · · · · · · · · · · · · · · · · · ·	• <u>0</u> ====================================	
	\gg	-minor oxidation								
_	X//			8	GB			· · · · · · · · · · · · · · · · · · ·		- Screen
-	\gg			0				• • • • • • • • • • • • • • • • • • • •		
-	X//									
6	$\rangle\rangle\rangle$							· · · · · · · · · · · · · · · · · · ·		
	\otimes				00	100	50/50mm			
-	\searrow	Dettem of hele of 0.0m	1230.8	9	SS	100				
		Bottom of hole at 6.3m.								

JECI	TNUMBER CGY-00092055-00 TNAME Hawkwood Lands			_	PR	IENT Highfield Land I OJECT LOCATION (Calgary, Alberta		
	GDATE 2016-10-20			_		REHOLE LOCATION			
	G CONTRACTOR Earth Drilling Co. Ltd.			_		EVATION 1202.32m			
	S METHOD Solid Stem Auger			_	GR	OUND WATER LEVEL			
	ENT TYPE Truck Mounted Auger Drill			_				RILLING Dry	
∋GED ∣	BY CS CHECKED BY MT	<u> </u>				ODT MUVAUUE		LING 7.9m 28/10/2	
S T		ELEV.		SAMPLE	%	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa) ④	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m
R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m 20 40 60 80	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold ● O 40 80 120 160	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL 	
	TOPSOIL, trace clay, silty, sandy, some rootlets, dark brown, moist Grain Size Analysis: Gravel = 0.0%	1202.0 0.3	1	GB			40 80 120 180		- Bentonite
	Sand = 60.1% Silt = 28.8% Clay = 11.2%		2	GB					
	CLAY, silty, medium plasticity, soft to firm, trace sulphates, greyish brown, moist -stiff, some dark grey mottling					8	Hdo	- 25	
	., exact groy motuming		3	SS	100		192		
			4	GB					
	-occasional silt seams, firm, damp		5	SS	100	7	.239 •	36 	C C Cuttings
	-trace gravel, silt seams		6	GB				24 ①	
	-ocasional silt and sand seams, medium to high plasticity, soft to firm		7	SS	100	9	96. •	25 ①	
	-occasional cobbles, trace gravel		8	GB				22 O	
		1405.0				. 14.		28	Sand
	CLAY (TILL), silty, some sand, trace rounded to sub-rounded gravel, occasional cobbles, very stiff,	1195.9 6.4	9	SS	100		٢	0 14 0	
	medium plastic, minor oxidation, brown, moist		10	GB					- Screen
		1194.5	11	SS	1				
<u></u>	SANDSTONE/MUDSTONE, extremely weak, highly weathered, grey, dry Refusal at 7.8m.	1194.5		•			<u> </u>	<u> </u>	. ,

		NUMBER CGY-00092055-00			_		IENT <u>Highfield Land</u>			
		DATE 2016-10-19			_		REHOLE LOCATION			
		CONTRACTOR _ Earth Drilling Co. Ltd.			_		EVATION 1199.83m			
									DRILLING	
		IT TYPE Truck Mounted Auger Drill			_			T AT END OF D	RILLING Dry	
OG	GED E	BY CS CHECKED BY MT							ING 4.9m 28/10/2	
				5	SAMPLE	S	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT	WELL DIAGRAM
2	S T					%	BEOW3/0.3111	(KFd) (KFd)	(%)	Casing Top Elev: m
5	R	SOIL DESCRIPTION	ELEV. DEPTH	ER	ш		20 40 60 80	100 200 300 400	20 40 60 80	_
Г Н	A T		(m)	NUMBER	ТҮРЕ	DVE	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	
n)	À			ĭ		RECOVERY		Peak Remold	PL MC LL	
	<u>N 17.</u>	T00001				<u>۳</u>	20 40 60 80	40 80 120 160	20 40 60 80	
		TOPSOIL, some clay, sandy, trace	1199.6	1	GB			• • • • • • • • • • • • • • • •		
		CLAY, silty, trace sand, medium plasticity, trace sand, brown, damp to	0.3							- Bentonite
		plasticity, trace sand, brown, damp to moist, firm		2	GB				31	
1				2						
				_			7	192		
2				3	SS	67		192		
-			1197.7						14	
		CLAY (TILL), silty, trace to some sand, trace rounded to sub-rounded	2.1	4	GB				\odot	
		gravel, medium plasticity, stiff, brown, damp to moist								
_		damp to moist						• • • • • • • • • • • • • • • • • • •		
3										
		Grain Size Analysis: Gravel = 0.9%		5	SS	100			∠⊃ 16 1⊕ 38	Cuttings
		Sand = 5.5% Silt = 84.2%					I			
		Clay = 9.4%		6	GB				19	
1		-trace grey mottling, moist		U					·····	
								• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	
		-silt seams, damp					110	239	26	
5		Ţ		7	SS	100		• • • • • • • • • • • • • • • • • • • •		
-										
	HA)			8	GB				Ω	
2										
5							10			Sand
	HA .	-very stiff		9	SS	100	18	192 ©		
_				10	GB				23	
?		-trace fine to coarse rounded gravel		10					·····	
		-trace coal fragments					15	287	21 Q	- Screen
3				11	SS	100		•	Φ	
				12	GB				· · · · · · · · · · · · · · · · · · ·	
9										
<u>ر</u>									<u></u>	
				13	GB	100	21	287. •	21 ©	
	$\forall / / \lambda$		1190.2	10					· · · · · · · · · · · · · · · · · · ·	1

		UMBER CGY-00092055-00 AME Hawkwood Lands			_		ENT Highfield Land			
		AWEAWE			_			Calgary, Alberta		
		ONTRACTOR Earth Drilling Co. Ltd.			_		EVATION 1217.42m			
		ETHOD Solid Stem Auger			_			LS: 🔽 AT TIME OF I	ORILLING	
		TYPE Truck Mounted Auger Drill			_	0.1			RILLING 9.45m	
		CS CHECKED BY			_			-	ING 8.6m 28/10/2	2016
						_	SPT N VALUE		FINES CONTENT	WELL DIAGRAM
)	S T		ELEV.		SAMPLE	%	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
- - 1 1)	R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL PL MC LL 20 40 60 80	-
	<u>\\</u> \ <u>\</u> \/	TOPSOIL, some rootlets, trace to some clay, silty, sandy, dark brown,	1217.1	1	GB		20 40 60 80	40 80 120 160	20 40 60 80	
		moist Grain Size Analysis: Gravel = 0.2% Sand = 61.7% Silt = 24.4% Cleve = 0.27/	0.3	2	GB				25 	Bentonite
		Clay = 13.7% CLAY, silty, medium plasticity, trace sand, brown, damp to moist, firm								
		-trace fine rounded gravel, moist CLAY (TILL), silty, some sand, trace	1215.6 1.8	3	SS	100	15·····	287		
		rounded to sub-rounded gravel, occasional cobbles, medium plasticity, stiff, brown, damp to moist		4	GB				17 Ġ	
		-occasional sand lenses Grain Size Analysis: Gravel = 22.8%		5	SS	100	36	311. •		Contractions
		Sand = 16.8% Silt = 50.7% Clay = 9.7% -trace to some coarse gravel, silt layers		6	GB				15 O	
		-trace gravel, moist		7	SS	100	15	311. •		
	5	-trace subangular to rounded gravel, some sand layers, dry to moist		8	GB				14. Q	Sand
		-occasional coal fragments		9	SS	100	31	359		
		-some coarse rounded gravel		10	GB				15 公	
				11	SS	100	19	335 O		- Screen
	7	-trace gravel		12	GB				14 O	
		-some gravel (rock in SPT), wet								

1	е	X	exp Services Inc.						RECORD	OF BOREH	HOLE : BH16-12 PAGE 1 OF 1
		NU	MBERCGY-00092055-00				сп	IENT Highfield Land	Management Inc		
			ME Hawkwood Lands			-		OJECT LOCATION (
			TE 2016-10-19			-		REHOLE LOCATION			
			NTRACTOR _ Earth Drilling Co. Ltd.			-		EVATION 1219.42m			
			THOD Solid Stem Auger			-					
			TYPE Truck Mounted Auger Drill			-	OI			RILLING Dry	
			<u>CS</u> CHECKED BY <u>MT</u>			_				.ING <u>6.2m 28/10/2</u>	
100								SPT N VALUE		FINES CONTENT	WELL DIAGRAM
					S	AMPLE	S	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
DE	S T			ELEV.			%		\odot		
E P T	R		SOIL DESCRIPTION	DEPTH	NUMBER	ш	RECOVERY	20 40 60 80	100 200 300 400	20 40 60 80	
H	A			(m)	MB	ТҮРЕ	NE N	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	
(m)	À				z		U U U	4	Peak Remold	PL MC LL	
							R	20 40 60 80	40 80 120 160	20 40 60 80	
E	<u>×1 1/</u>		TOPSOIL, some rootlets, trace to	1219.2	1	GB					
F	Ŵ		some clay, trace to some silt, sandy, /	0.3							- Bentonite
F			CLAY, silty, trace sand, medium						• • • • • • • • • • • • • • • • • • •	26	
E	XX		plasticity, stiff, brown, damp to moist		2	GB					
-1	XX										
Ł	XX										
Ł	XX			1217.9							
F	<u>[XX</u>		SAND, silty, trace clay, fine to	1217.9				· · · · · · · · · · · · · · · · · · ·			
E	117		medium, light brown, dry to damp,	1217.7	3	SS	90	47	239 ©		
-2	H		compact	1.7							
F	4///		CLAY (TILL), silty, some sand, trace fine to coarse sub-rounded gravel,							15	
F			medium plasticity, stiff to very stiff,		4	GB				Δ	
F			light brown, moist -minor oxidation								
È .											
- 3									· · · · · · · · · · · · · · · · · · ·		
F			-very stiff		~	~~~		16			
F					5	SS	0		· · · · · · · · · · · · · · · · · · ·		
F										16	
F					6	GB					
-4			-trace to some rounded gravel, occasional cobbles								12G 12G
F											
F											Sand
F			-hard					33	431		
F_			-nara		7	SS	80		#31		
- 5											
F										.15	
Ē					8	GB				O	- Screen
E	1/1/										
F.	H										
- 6											
F	1/1/1	Į₹	-very stiff		9	SS	100		431	15 O	
F				1212.9	ษ	33	100		•		
			Bottom of hole at 6.6m.					<u> </u>			-

1	е				R	ECO	ord of B(DREHOLE	: BH16-13 PAGE 1 OF 1
PRC	JECT	NUMBER _CGY-00092055-00 0	CLIENT Highfi	eld Lar	nd Man	ageme	ent Inc.		
			PROJECT LOCA	TION	Calg	ary, Alt	berta		
			ELEVATION 1						
			GROUND WATE	RLE			TIME OF DRILLING		
		NT TYPE Truck Mounted Auger Drill BY CS CHECKED BY MT					TER DRILLING		
100					- SAMPLE		SPT N VALUE	POCKET PEN.	FINES CONTENT
D	s						BLOWS/0.3m	(kPa) (kPa)	(%)
E P T	T R		ELEV.	Ľ.		۲۲ %	20 40 60 80	100 200 300 400	20 40 60 80
т Н	A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT
(m)	Å			R	⊢			Peak Remold	PL MC LL
	. , ,					Ř	20 40 60 80	40 80 120 160	20 40 60 80
F	<u>×17</u>	TOPSOIL, some clay, trace to some silt, sandy, some organics, da	ark 1263.4	1	GB				
E		CLAY (TILL), silty, some sand to sandy, trace to some angular gra	vel, 0.3						
È.		medium plasticity, stiff, brown, damp to moist		2	GB				8 (j)
Ē1				2					
È.									
Ē									
E		-layers of well graded sand and gravel, cobbles, some silt, occasio	nal	_	00	400	39		13
F 2		boulders, very stiff		3	SS	100			$\hat{\mathbf{O}}$
E									
È .				4	GB				
Ē									
F 3									
F									
E					SS	0			
F					<u> </u>			$\begin{array}{c} \cdot \cdot$	
Ē					GB				
F"								• • • • • • • • • • • • • • • • • • • •	
Ē									
F		-some cobbles					23		
Ē,		-some cobbles		5	SS	0			
- 5								·····	
Ē									
F									
ŧ,									
6								· · · · · · · · · · · · · · · · · · ·	
ŧ				6	ss	2933	60/125mm		
F	Ŵ		1257.0				50/125mm		
	////	Refusal at 6.7m.	1207.0	I					

					_					
		NAME Hawkwood Lands			_					
		DATE 2016-10-19 CONTRACTOR Earth Drilling Co. Ltd.			_		REHOLE LOCATION EVATION 1228.18m			
		METHOD Solid Stem Auger			_				DRILLING	
		NT TYPE Truck Mounted Auger Drill				2.1			RILLING Dry	
		BY <u>CS</u> CHECKED BY <u>MT</u>							ING <u>5.1m</u> 28/10/2	
				5	SAMPLE	S	SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
D	ş					%	BLOWS/0.3m	(kPa) (kPa)	(%)	Casing Top Elev: m
E P	T R	SOIL DESCRIPTION	ELEV. DEPTH	ER	ш		20 40 60 80	100 200 300 400	20 40 60 80	
T H	A	GOIL DEGONIF HON	(m)	NUMBER	ТҮРЕ)VEI	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	
m)	Å			N۲		RECOVERY	L	Peak Remold	PL MC LL	
						Ŕ	20 40 60 80	40 80 120 160	20 40 60 80	
	<u>x 1/.</u>	TOPSOIL, some clay, some silt, sandy, some rootlets and organics,		1	GB					
	H N	dark brown, moist	1227.7							
		CLAY, silty, trace to some sand, medium plasticity, brown, damp to	0.5	2	GB				18 O	
1	1	moist, firm		2						
	1		1226.7							
		CLAY (TILL), silty, trace to some	1.5	^	00		16	192		
2	T A	sand, trace rounded to sub-rounded gravel, some sulphates, medium		3	SS	80				- Bentonite
-		plasticity, very stiff, brown, moist -Sulphate Content <0.1%							15	
		-occasional cobbles, minor oxidation,		4	GB				1 911 41	
		trace sulphates Grain Size Analysis:								
2	1 A A	Gravel = 0.0%								
3		Sand = 4.6% Silt = 83.9%				-	12		16	
		Clay = 11.4% -trace to some coarse gravel, stiff		5	SS	67			Q	
		-uace to some coalse gravel, Sun								
	H A			6	GB					
4		-dry		Ũ						
	HA	-some gravel, major oxidation, very		7		400	1.17		19	Cuttings
5		stiff Ţ		(SS	100				
		- <u></u>								
		-minor grey mottling, minor oxidation		8	GB					129 129
										199 199
6										Fra Fra Sand
-						<u> </u>			16	
				9	SS	100		287	Ô	
7				10	GB					
<u>/</u>		-trace fine sub-rounded gravel, trace to some sand								
										- Screen
	Ø		1220.3	11	SS	100	49		17	Screen
8	KA	MUDSTONE, completely weathered	7.9	11	33		• • • • • • • • • • • • • • • • • • • •			
		to residual soil, extremely weak, light brown to grey, dry								
	\mathbb{K}	biowir to grey, dry		12	GB					
	$ \rangle\rangle\rangle $									
9										
-						-	89		• • • • • • • • • • • • • • • • • • •	
	\otimes			13	GB				14 O	
	¥//2		1218.6							

ECT NUMBERCGY-00092055-00			_	CL	IENT _Highfield Land	Management Inc.		
ECT NAME Hawkwood Lands			_					
ING DATE 2016-10-19			_		REHOLE LOCATION			
ING CONTRACTOR Earth Drilling Co.	Ltd.		_		EVATION 1222.07m			
ING METHOD Solid Stem Auger			_	GR	OUND WATER LEVEL		RILLING Dry	
PMENT TYPE Truck Mounted Auger Dri GED BY CS CHECKED BY			_				ING <u>5.3m 28/10/2</u>	
			SAMPLE		SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
s					BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
	ELEV.	£		۲%	A	•		
A SOIL DESCRIPTION	DEPTH	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE	100 200 300 400 FIELD VANE	20 40 60 80 PLASTIC & LIQUID LIMIT	-
T A	(m)	Ŋ		0 S	BLOWS/0.3m	SHEAR (kPa) Peak Remold	MOISTURE CONTENT PL MC LL	
				RE	20 40 60 80	40 80 120 160	20 40 60 80	
TOPSOIL, some clay, trace silt,								
sandy, some organics, dark brown moist		1	GB					
	1221.5						21	
CLAY, silty, trace sand, medium plasticity, stiff, brown, damp to r	0.6 noist	2	GB				۵.	
					7			
-occasional silt seams, minor oxidation		3	SS	80		192 O		
		4	GB				23	- Bentonite
 -trace coarse sand, trace cobble trace gravel 	es,	-						
	1219.3							
CLAY (TILL), silty, some sand, to rounded to sub-rounded gravel,								
minor oxidation, low to medium		_		1.00	17			
plasticity, very stiff, brown, damp moist	0 10	5	SS	100				
							15	
-light brown, dry		6	GB				$\hat{\mathbf{O}}$	
					·····			
	1217.3				51			
MUDSTONE, completely weather		7	SS	100				
to residual soil, extremely weak, brown, minor oxidation, dry	light							
		8	GB				12 O	
		0						Screen and
-extremely weak, highly weather	red			1				
	1215.5	9	SS					

	е							RECORD	OF BOREH	HOLE : BH16-16 PAGE 1 OF 1
PRC	JECT	NUMBER CGY-00092055-00				CI	IENT Highfield Land	Management Inc		
		NAME Hawkwood Lands			-		OJECT LOCATION			
		DATE 2016-10-19			_		REHOLE LOCATION			
		CONTRACTOR Earth Drilling Co. Ltd.			-		EVATION 1216.30m			
		METHOD Solid Stem Auger			-		OUND WATER LEVEL			
		NT TYPE Truck Mounted Auger Drill								
		BY CS CHECKED BY MT			-				ING 28/10/201	
100							SPT N VALUE		FINES CONTENT	WELL DIAGRAM
	s			S	AMPLE	s	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
D E	T		ELEV.			%		۲		
E P T	R	SOIL DESCRIPTION	DEPTH	NUMBER	ш	RECOVERY	20 40 60 80	100 200 300 400	20 40 60 80	_
H	A T		(m)	Ψ	ТҮРЕ	DVE	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	
(m)	A			ž		ы	L L	Peak Remold	PL MC LL	
						R	20 40 60 80	40 80 120 160	20 40 60 80	
-	<u>×1 1/</u>	TOPSOIL, some clay, sandy, trace silt, some organics, dark brown, moist	1216.0	1	GB					
F	txX	CLAY, silty, trace sand, trace rootlets,	0.3							
-	EX (medium plasticity, stiff, light brown,	0.0							- Bentonite
-	EX I	damp		2	GB					
-1	1XX								······································	
F	XX									
F										
F	X	-trace gravel	1214.6				8		23	
E		CLAY (TILL), silty, trace sand, trace	1.7	3	SS	100		• • • • • • • • • • • • • • • • • • • •	Ω	
<u> </u>		fine to coarse rounded to sub-rounded gravel, medium								
E .		plasticity, stiff, brown, damp		4	GB					
-		-moist								
F										
- 3	H									
-	Ø//						13		18	
F				5	SS	90			•	
-	////									
E				6	GB					
- 4	T))	-trace rounded gravel		0	GD					
-	///									
È .	9//									Sand
-								287	16	
F		-silt seams, trace gravel, damp to moist		7	SS	100		287	$\bigcirc \bigcirc $	
- 5							·····	······································	······································	
F										
-		-trace fine to coarse rounded to		8	GB					- Screen
F		sub-rounded gravel, sand seams								
Ē	H									
6	Ø//									
É		-damp to moist		0	~	100		335	16	
F	6///		1209.7	9	SS	100		•	Ó	
	PILL	Bottom of hole at 6.6m.			· · · · · ·					4

					_		IENT Highfield Land			
		NAME Hawkwood Lands			_					
		DATE 2016-10-17			_					
		CONTRACTOR Earth Drilling Co. Ltd. METHOD Solid Stem Auger					EVATION 1236.97m			
		NT TYPE Mounted Auger Drill			_	GR	OUND WATER LEVEL			
		BY <u>CS</u> CHECKED BY <u>MT</u>			_				ING 28/10/201	
				c	SAMPLE	2	SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
)	s						BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
	T R		ELEV.	Ř		% ∖.	20 40 60 80	100 200 300 400	20 40 60 80	
Г	Α	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	DYNAMIC CONE	FIELD VANE	PLASTIC & LIQUID LIMIT MOISTURE CONTENT	1
H n)	T A		()	NU	Ĥ	00	BLOWS/0.3m	SHEAR (kPa) Peak Remold	PL MC LL	
						RE	20 40 60 80	40 80 120 160	20 40 60 80	
	<u>×1 /</u>	TOPSOIL, some clay, trace silt,	1236.7	1	GB					: Bentonite
	///	sandy, some organics, dark brown, /-	0.3					• • • • • • • • • • • • • • • • • • • •		
	T / X	CLAY (TILL), silty, some sand, trace							29	
		fine sub-rounded to sub-angular gravel, trace sulphates, trace		2	GB				29 0	
		organics, medium plasticity, stiff, light brown, moist								
	H A	como fino to coorres cuitares de la					22			
		-some fine to coarse sub-rounded to sub-angular gravel, occasional		3	SS	100	22 • • •			
		sulphates, minor oxidation, very stiff -Sulphate Content <0.1%								
				4	GB				17 O	
	H	-trace fine gravel, light brown/light grey with major oxidation, damp		4						
		grey with major oxidation, damp								
							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
		-sulphates, rust stains, hard				-	52			
		,		5	SS	100				Cuttings
	ØŊ								Ġ.	
				6	GB				Ŏ	
		-some angular gravel, minor oxidation								
		-trace to some sand, trace gravel, occasional oxidation seams		7	SS	100	73			
		Sociasional University Scallis		1		100	_ · · · · · · · · · · · · · · · · · · ·			
									.16	
	H/A	-some sand, medium to high plastic		8	GB				20) 52	
		Grain Size Analysis: Gravel = 0.4%								
	()//	Sand = 18.4%								
		Silt = 61.7% Clay = 19.5%							14	PAN PAN
	H			9	SS	67			Û	Sand
			1000.0	10	GB					
	K/1//	-some sand to sandy, trace fine │ angular gravel, /	1230.0 7.0							
		SANDSTONE, extremely weak,	1.0							
		highly weathered, brown, dry								
					60	400	•			
				11	SS	100.	50/100mm			- Screen
	· · · · ·									
				12	GB					
				40		4			· · · · · · · · · · · · · · · · · · ·	
		 very weak, moderately weathered 	1227.5	<u>13</u> 14	SS GB	1	50/50mm			

1	е	XD. exp Services Inc.						RECORD	OF BORE	HOLE : BH16-18 PAGE 1 OF 1
PRO	JECT	NUMBER _ CGY-00092055-00				CLI	ENT Highfield Land	Management Inc.		
		NAME Hawkwood Lands			_					
DRIL	LING	DATE _2016-10-17			_	во	REHOLE LOCATION			
DRIL	LING	CONTRACTOR Earth Drilling Co. Ltd.			_	ELE	EVATION 1239.18m			
DRIL	LING	METHOD Solid Stem Auger			_	GR	OUND WATER LEVEL			
		NT TYPE Truck Mounted Auger Drill			_			-	RILLING Dry	
LOG	GED	BY CS CHECKED BY MT					1 1	_	ING 28/10/201	
D	S T			5	SAMPLE	s %	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa))	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m
E P	R	SOIL DESCRIPTION	ELEV. DEPTH	ĔR	ш		20 40 60 80	100 200 300 400	20 40 60 80	-
T H (m)	A T A		(m)	NUMBER	ТҮРЕ	RECOVERY	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa) Peak Remold	PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL 20 40 60 80	
-		TOPSOIL, trace clay, some silt, sandy, some organics, dark brown,	1239.1 0.1	1	GB	_		40 80 120 160	20 40 60 80	
-		dry to moist Grain Size Analysis:							18 Q	
-	XX	Gravel = 0.7% Sand = 70.6%		2	GB		1		Q	
[-1	XX	Silt = 22.4% Clay = 6.3%								
		CLAY, silty, some sulphates, trace sand, low to medium plasticity, stiff, grevish brown, dry	1237.7				· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • •		
- 2	H	CLAY (TILL), silty, some sand, trace fine to coarse sub-angular to	1.5	3	SS	100	· 18 · · · · · · · · · · · · · · · · · ·	436	Ω	
		sub-rounded gravel, some sulphates, medium plasticity, very stiff, brown,							14	Cuttings
-		damp to moist -some fine to coarse rounded to		4	GB				12 40	
-		sub-rounded gravel, occasional coal fragments, greyish brown								
- 3	DN	Grain Size Analysis: Gravel = 10.5%								
-		Sand = 17.1%	1005.0	_			50/100mm		11	
-		Silt = 60.8% Clay = 11.6%	1235.8 3.4	5	SS	100			-Q	
-		SILT, sandy, (fine sand), trace to some clay, non to low plasticity, light		6	GB					
_4		brown, minor oxidation, dry CLAY, silty, trace sand, low to	1235.2	0	GB			· · · · · · · · · · · · · · · · · · ·		
-	X	medium plasticity, light brown with	4.0							
-	XX	major to minor oxidation, dry, hard, (possible extremely weak and								Sand
E	XX	completely weathered MUDSTONE bedrock)		7	SS	100	50/125mm			
- 5	XX	-trace to some sand, medium plasticity, minor oxidation		1	33	100	• • • • • • • • • • • • • • • • • • • •			
	XX	plasticity, millior oxidation							7	
-	X	-trace sand, occasional mudstone fragments		8	GB				Ω	- Screen
	XX	nagments								
- 6	XX							· · · · · · · · · · · · · · · · · · ·		
	XXI	Refusal at 6.2m.	1233.0	9	SS	100				
		nerusai at 0.2111.								

				_		IENT Highfield Land I			
	NAME Hawkwood Lands			_					
	DATE 2016-10-17			_		REHOLE LOCATION			
	CONTRACTOR Earth Drilling Co. Ltd.			_		EVATION 1231.14m			
	METHOD Solid Stem Auger			_	GR	OUND WATER LEVEL			
	NT TYPE Truck Mounted Auger Drill			_					У
GED	BY <u>CS</u> CHECKED BY <u>MT</u>					1			
S T			5	AMPLE	s %	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa) ④	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m
R A T	SOIL DESCRIPTION	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa)	20 40 60 80 PLASTIC & LIQUID LIN MOISTURE CONTEN	ИТ
A			z		REC	20 40 60 80	Peak Remold	PL MC LL 20 40 60 80	
	TOPSOIL, clayey, silty, some sand, some organics and rootlets, trace gravel, dark brown, dry to moist	1230.9 0.3	1	GB					· ∴··· · ···· · ····
	CLAY (TILL), silty, some sand to sandy, trace fine to coarse rounded to sub-rounded gravel, some sulphates, medium plasticity, brown, damp to moist, very stilf		2	GB			383 •	18	
		1229.6							
	CLAY, silty, low to medium plasticity, hard, light brown to brownish grey, damp	1.5	3	SS	100	▲ 			
	-major oxidation from 1.8m -trace mudstone fragments		4	GB				15 众	
	MUDSTONE, extremely weak, highly to completely weathered, occasional	1228.4 2.7							
	black lenses, grey to brownish grey, minor oxidation		5	SS	100	62 •			
X			6	GB				12 O	
			7	SS		86			← Sand
			8	GB				14. O	
						5g/100mm			
$\langle \rangle \rangle$	-grey, occasional oxidation seams, extremely to very weak, highly	1224.7	9 10	SS GB				· · · · · · · · · · · · · · · · · · ·	

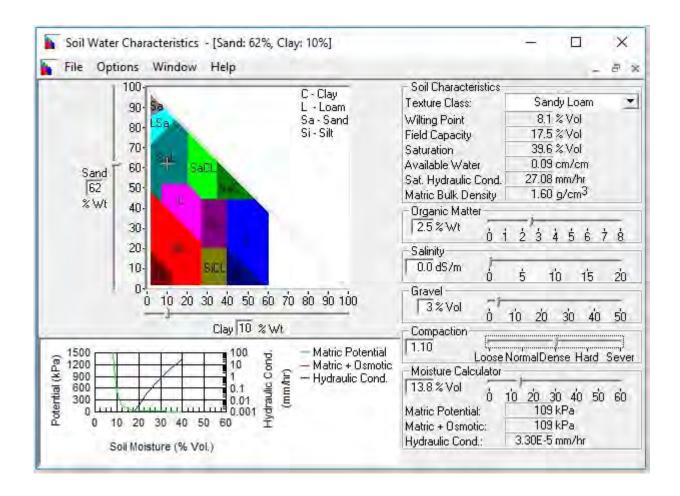
DJECT NUMBER <u>CGY-00092055-00</u> DJECT NAME <u>Hawkwood Lands</u> LLING DATE _2016-10-17			_	PR	IENT Highfield Land I OJECT LOCATION (DREHOLE LOCATION	Calgary, Alberta		
LLING CONTRACTOR _ Earth Drilling Co. Ltd.			_		EVATION 1218.40m			
LLING METHOD Solid Stem Auger			_	GR	OUND WATER LEVEL		DRILLING	
JIPMENT TYPE						T AT END OF D	RILLING Dry	
GGED BY CS CHECKED BY M	ЛТ					T AFTER DRILL	ING 28/10/20)16 Dry
		5	SAMPLE	S	SPT N VALUE	POCKET PEN.	FINES CONTENT	
S T R A SOIL DESCRIPTION T A	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY %	BLOWS/0.3m 20 40 60 80 DYNAMIC CONE BLOWS/0.3m 20 40 60 80	(kPa) ● 100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold ● 40 80 120 160	(%) 20 40 60 80 PLASTIC & LIQUID LIMI MOISTURE CONTENT PL MC LL 20 40 60 80	π
M_{C} TOPSOIL, trace clay, some silt, sandy, some organics, trace gravel, dark brown, moist G Grain Size Analysis: G Grain Size Analysis: G Grain Size Analysis: G Sand = 59.5% G Silt = 17.0% G Clay = 6.0%	1218.2	1 2	GB GB				4 \$2	
site SAND, site, some sand, gravelly, rounded to sub-rounded gravel, occasional cobbles and boulders, brown, dry to damp, compact cite -cobbles and boulders, some gravel to gravelly		3	GB				13	Bentonite
-coarse sand, trace to some gravel		4 5	GB GB				20	
-some gravel		6	GB				7. Q	C Cuttings
		7	SS	0	19			
-well graded sand		8	GB				9 Ø	- Screen
Bottom of hole at 6.6m.	1211.8	9	SS	40	20			

	ECT NAME Hawkwood Lands ING DATE 2016-10-17 INC CONTRACTOR Carl Add			_	во	OJECT LOCATION (REHOLE LOCATION			
	ING CONTRACTOREarth Drilling Co. Ltd. ING METHODSolid Stem Auger			_		EVATION 1231.00m	LS: 💆 AT TIME OF I		
	MENT TYPE Truck Mounted Auger Drill			_					6 Dm/
	ED BY <u>CS</u> CHECKED BY <u>MT</u>		c	AMPLE	s	SPT N VALUE	POCKET PEN.	ING 28/10/201 FINES CONTENT	6 Dry WELL DIAGRAM
E 1 P F T <i>A</i> H 1	T	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY %	BLOWS/0.3m 20 40 60 80 DYNAMIC CONE BLOWS/0.3m	(kPa) (*) 100 200 300 400 FIELD VANE SHEAR (kPa)	(%) 20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT	Casing Top Elev: m
,	A TOPSOIL, clayey, silty, some sand,	1230.8	z 1	GB	REC	20 40 60 80	Peak Remold	PL MC LL 20 40 60 80	
	some organics, trace gravel, dark brown, moist CLAY (TILL), silty, some sand, some fine to coarse rounded to sub-rounded gravel, trace sulphates, medium plasticity, brown, damp to moist, stiff	0.2	2	GB					Bentonite
	-occasional cobbles to 1.5m -Sulphate Content <0.1%	-				16			
2			3	SS	0			14	
	-trace gravel, occasional sulphates		4	GB				\circ	
	-sand layers from 3.0 to 4.6m		5	SS	25	8			C C Cuttings
4	-some gravel to gravelly, moist		6	GB				9	
	-some sand to sandy, very stiff		7	SS	60	30	335		
			8	GB				11. 	
	-cobbles and boulders		9	SS	32	22			Sand
	-cobbles		10	GB				9 Č	- Screen
1		1222.9	11	SS	25	26 •			

					_		IENT <u>Highfield Land</u>					
		NAME Hawkwood Lands DATE 2016-10-17			_		REHOLE LOCATION					
		CONTRACTOR _ Earth Drilling Co. Ltd.			_		EVATION 1217.32m					
		METHOD Solid Stem Auger			_				DRILLING			
		TTYPE Truck Mounted Auger Drill			_	0.0			∠AT TIME OF DRILLING ✓ AT END OF DRILLING 6.55m			
		Y CS CHECKED BY MT	-		_				ING <u>6.6m 28/10/2</u>	2016		
							SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM		
	S T		ELEV.		SAMPLE	%	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m		
5 - - -	R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold ● ○	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL	-		
_	<u>x1 1₂.</u>	TOPSOIL, trace to some clay, trace to some silt some sand to sandy.				~	20 40 60 80	40 80 120 160	20 40 60 80	: Sentonite		
	1 <u>7</u> 	to some silt, , some sand to sandy, some organics, dark brown, moist CLAY (TILL), silty, some sand, trace	1216.7	1	GB				12			
		fine sub-rounded gravel, trace organics, occasional cobbles, medium plasticity, very stiff, brown,	0.0	2	GB				· O			
		damp to moist -trace to some gravel					30					
				3	SS	20	30					
		-gravelly, light brown, moist		4	GB				Q			
		-minor oxidation		5	SS	25	20					
		-some gravel to gravelly, occasional coal fragments		6	GB							
				7	SS	100	22		15 O			
		-trace to some rounded to sub-rounded gravel		8	GB				15 \Q			
		-gravelly		9	SS							
		-cobbly, gravelly, grey, wet		10	GB				ō			
				11	SS	50	47			nc∡ nc∡ ← Sand		
				12	GB					- Screen		
		-some gravel		13	SS	50	26		17 O			

	CT NUMBER CGY-00092055-00			_		IENT Highfield Land			
	CT NAME Hawkwood Lands NG DATE 2016-10-17			_		OJECT LOCATION			
	NG CONTRACTOR Earth Drilling (Co. Ltd.		_		EVATION			
	NG METHOD Solid Stem Auger			_				DRILLING	
	MENT TYPE Truck Mounted Auger								
GEI	ED BY CS CHECKED	BY MT				0071000-		ING 28/10/201	
s	s			SAMPLE	ES	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m
Т	т	ELEV	. r		% ∖		• 100, 200, 200, 400	20 40 60 80	
R A	A SOIL DESCRIPTION	DEPTI (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE	100 200 300 400 FIELD VANE	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT	1
T A			N N	٦	UC O	BLOWS/0.3m	SHEAR (kPa) Peak Remold	PL MC LL	
	1				R	20 40 60 80	40 80 120 160	20 40 60 80	
	silt, sandy, trace gravel, som	o some 1191.8 e / 0.2	3 1	GB					
	organics, dark brown, moist CLAY, silty, trace fine sand, t	0.2							
	sulphates, trace rootlets, me plasticity, light brown, moist,	dium	2	GB				24 	
X	stiff								
	-trace rootlets, occasional sil	tlavers							
			3	SS	100		287 •	Ö	
	-some silt		4	GB				Q	
X	-occasional sand seams and	layers 3.1	-	-		13			
	SAND, some silt to silty, trac fine grained, brown, moist, co	e clav.	5	SS	100				
		1188.4	-					18	
	CLAY, silty, some fine sand, plasticity, stiff to very stiff, bro	medium 3.7 own,	6	GB				118 位	
	moist								
	-trace sand		7	SS	100	17			63 63
	-sandy		Ľ		100				
			8	GB				20 ©	- Bentonite
	-trace sand to sandy, stratifie							····₩·····	
ØØ.	SAND, some silt to silty, trace	1186.2	2						
	fine grained, brown, moist, lo							21	Sand
	compact		9	SS	50	14 •		21 ©	
					-				
777	CLAY, silty, trace to some sa	1185.2	2 10	GB			239 ©		
	to medium plasticity, stiff, bro								
	moist								
	-occasional silt seams and le	inses			-	12	192	31	- Screen
			11	SS	100			Q	
					+				
	-occasional sandy seams an	d lavers	12	GB					
	Coole of an oundy souths an								
	-occasional sand lenses					15	168	22 O	
XX			13	SS	100				1

					_		IENT Highfield Land			
		NAME Hawkwood Lands			_					
		DATE 2016-10-19 CONTRACTOR Earth Drilling Co. Ltd.			_		EVATION 1208.34m			
									ORILLING	
		NT TYPE Mounted Auger Drill			_	GR			RILLING	
		BY <u>CS</u> CHECKED BY <u>MT</u>			_				ING <u>3.5m 28/10/2</u>	
1						e.	SPT N VALUE	POCKET PEN.	FINES CONTENT	WELL DIAGRAM
	S T		ELEV.		SAMPLE	%	BLOWS/0.3m	(kPa) (kPa)	(%)	Casing Top Elev: m
I	R A T A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold ● ○ 40 80 120 160	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL 	
1	<u>. 1, .</u> .	TOPSOIL, some rootlets, trace to some clay, trace to some silt, sandy, ~	1208.1	1	GB					
		dark brown, moist CLAY, silty, trace sand, trace rootlets, medium plasticity, stiff, brown, moist Grain Size Analysis: Gravel = 0.0%	0.3	2	GB				33 26I⇔141	
		Sand = 22.1% Silt = 67.0% Clay = 10.9% -trace to some sand, trace sulphates	1206.5	3	SS	100	19		23	Cuttings
		CLAY (TILL), silty, some sand, trace rounded to sub-rounded gravel, medium plastic, stiff, brown, moist	1.8	4	GB					
N W W		SILT, trace to some sand, trace clay,	1205.3 3.0	F	00	67	14	96 ©	23	
		non to low plasticity, brown with grey $\underline{\Psi}$ mottling, moist, stiff		5	SS GB	67			26 	
		-some clay, low to medium plasticity	4000 5	U						. ● Bentonite
Þ		CLAY, silty, trace to some sand,	1203.8 4.6				12		24	
		medium plasticity, stiff, light brown, damp to moist	4.0	7	SS	40		144 •	<u></u>	
		-trace fine rounded to sub-rounded gravel	1202.2	8	GB					Sand
A A A		CLAY (TILL), silty, some sand, trace rounded to sub-rounded gravel,	6.1	9	SS	100	.15	287	18 O	
N W W L L		medium plastic, stiff to very stiff, brown, moist		10	GB					
				11	SS	33	15.	239	19 Q	- Screen
A TALINITAL		-trace coarse gravel		12	GB					
		-cobble in SPT		13	SS	100	56	287	- 19 ©	


PROJECT NUMBER _CGY-00092055-00 PROJECT NAME _Hawkwood Lands DRILLING DATE _2016-10-18 DRILLING CONTRACTOR _Earth Drilling Co. Ltd.						CL	IENT Highfield Land	Management Inc.				
						PROJECT LOCATION BOREHOLE LOCATION						
						DRILLING METHOD Solid Stem Auger						
	IPMENT TYPE Truck Mounted Auger Drill				_				RILLING 1.22m			
G	GEDE	BY CS CHECKED BY MT					007-00-0	AFTER DRILLING 2.2m 28/10/2				
)	s			S	SAMPLE		SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m		
	T R		ELEV.	Ř		۲۶ %	20 40 60 80	100 200 300 400	20 40 60 80			
	A	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	VEF	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT]		
ı 1)	Å			NN		RECOVERY		Peak Remold	PL MC LL			
						R	20 40 60 80	40 80 120 160	20 40 60 80			
	<u>×11</u> 77777	TOPSOIL, clayey, some silt, sandy,	1208.7	1	GB							
		low/medium plasticity, dark brown, /	0.2									
		CLAY, some silt to silty, trace sand,		_					35	Cuttings		
		medium to high plasticity, brown,		2	GB			· · · · · · · · · · · · · · · · · · ·	Ω	. Cuttings		
		moist, firm ▼										
		*										
		-occasional silt seams, stratified			-	-	6	96	35			
		layers of clay		3	SS	100		0	õ			
						+						
		Y Sulphoto Contant <0.1%		4	GB							
		-Sulphate Content <0.1%										
6												
		-stiff Grain Size Analysis:		5	SS	100	9	120	17 20 32			
		Gravel = 0.2%		0								
		Sand = 7.9% Silt = 84.5%		~						Bentonite		
		Clay = 7.4% -trace to some sand, trace to some		6	GB							
		sub-rounded gravel										
			1204.3									
		CLAY (TILL), silty, some sand, trace	4.6		-	-	1.11	239. •	20			
		gravel, medium plasticity, very stiff, brown, moist		7	SS	50			Ô			
		Stown, most			<u> </u>							
		-occasional coal fragments		8	GB							
		-occasional Coal ItayIntellis										
	HA											
					L	L			10	Sand		
				9	SS	67	15	287 ©	18 O			
							l					
	HA			10	GP							
'				10	GB							
		- some sand to sandy			-		- 20	239	-16	- Screen		
				11	SS	33			0			
							1					
				12	GB							
					L							
				13	SS	60	25	287	18 			
	1/16	- sand seam, dark brown	1199.3	10								

20	JECT	NAME Hawkwood Lands			_	PR		Calgary, Alberta		
		DATE 2016-10-18 CONTRACTOR Earth Drilling Co. Ltd.			_		REHOLE LOCATION EVATION 1204.05m			
		METHOD Solid Stem Auger			_				DRILLING	
		NT TYPE Truck Mounted Auger Drill			_				RILLING <u>3.05m</u>	
		BY CS CHECKED BY MT			_				ING <u>1.5m</u> 28/10/2	016
	120						SPT N VALUE		FINES CONTENT	WELL DIAGRAM
)	S T		ELEV.		SAMPLE	%	BLOWS/0.3m	(kPa)	(%)	Casing Top Elev: m
	R A T	SOIL DESCRIPTION	DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa)	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT	-
)	A					REC	20 40 60 80	Peak Remold 0 40 80 120 160	PL MC LL 20 40 60 80	
		TOPSOIL, some clay, trace silt, sandy, some organics, dark brown, moist	1204.0 0.0	1	GB					
		CLAY, silty, trace fine sand, trace sulphates, medium plasticity, stiff, light brown, moist -occasional grey mottling, trace rootlets to 1.8m		2	GB					
		Ţ		3	SS	100	8	287 O	27 Q	
				4	GB					Cuttings
		✓ -occasional silt seams, wet		5	SS	100	8	96.	32 ©	
				6	GB					
•		CLAY (TILL), silty, some sand, trace	1199.5 4.6				110	215.	25	
		fine to coarse sub-angular to sub-rounded gravel, medium plasticity, stiff, brown, moist		7	SS	100		•		
		-wet		8	GB					Bentonite
		-occasional silt seams		9	SS	100	12	239 •		
		CLAY, some silt to silty, medium plasticity, stiff, brown, moist	1197.2 6.9	10	GB					
		. ,	1196.3							
		CLAY (TILL), silty, some sand, trace fine to coarse rounded to sub-rounded gravel, medium	7.8	11	SS	100	▲	287 O	20 C	
		plasticity, stiff, brown, moist		12	GB					
		-some gravel		13	SS	100	 19 ▲	335	19	

S SAMPLES SAMPLES Concertent Place Control Place Contro Place Control Plac	ri Ri Ri Ri	JECT N LING D LING C LING N	NUMBER CGY-00092055-00 NAME Hawkwood Lands DATE 2016-10-18 CONTRACTOR Earth Drilling Co. Ltd. METHOD Solid Stem Auger IT TYPE Truck Mounted Auger Drill IY CS CHECKED BY				PR BO EL	EVATION _ 1200.60m	Calgary, Alberta		
SOIL DESCRIPTION ELEV/ DEFIN M m M m <th>_</th> <th></th> <th></th> <th></th> <th>S</th> <th>SAMPLE</th> <th>S</th> <th></th> <th>POCKET PEN.</th> <th>FINES CONTENT</th> <th>WELL DIAGRAM</th>	_				S	SAMPLE	S		POCKET PEN.	FINES CONTENT	WELL DIAGRAM
TOPSOL: some cirk, trace still, model 1200.5. 1 68	D E P T H (m)	T R A T	SOIL DESCRIPTION	DEPTH	NUMBER	ТҮРЕ		20 40 60 80 DYNAMIC CONE BLOWS/0.3m	100 200 300 400 FIELD VANE SHEAR (kPa) Peak Remold	20 40 60 80 PLASTIC & LIQUID LIMIT MOISTURE CONTENT PL MC LL	-
Grain Size Analysis: Gravel = 3.7% Gravel = 3.7% Sand = 16.4% Sand = 16.4% Sand = 16.4% -trace fine gravel, very stiff 5 -trace fine gravel, very stiff 5 -trace fine gravel, very stiff 6 -trace fine gravel, very stiff 6 -trace fine gravel, very stiff 6 -trace fine gravel, very stiff 7 SS 100 -trace fine gravel, very stiff 7 SS 100 -sandy, gravelly, medium plasticity, stiff 9 -sandy, gravelly, medium plasticity, stiff 11 -trown 1192.8 -trown 1192.8 -trown 1192.8 -trift 7.8 11 SS 12 GB	<u>1</u>		sandy, some organics, dark brown, moist CLAY (TILL), silty, some sand, trace fine to coarse sub-rounded gravel, trace rootlets, trace sulphates, low to								Cuttings
3 Grain Size Analysis: Gravel = 3.7% Sand = 16.4% Sand = 16.4% Start = 67.1% Clay = 12.8% -trace fine gravel, very stiff 4 GB 11 17 336 14 - 4 5 SS 100 5 SS 100 - <	2				3	SS	100				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3		Gravel = 3.7% Sand = 16.4% Silt = 67.1%		4	GB				-1 6} 140	
4 -light brown 6 GB -			-trace fine gravel, very stiff		5	SS	100			14	
5 7 SS 100 A O	4		-light brown		6	GB					- Bentonite
6 -sandy, gravelly, medium plasticity, stiff 9 SS 80 14. 192.2 16. -sand 7 9 SS 80 4. 192.2 16. -sand 10 GB 10 GB 10. -sand -sand -sand 8 CLAY, some sit, trace coarse sand, medium plasticity, light brown, moist, stiff 7.8 11 SS 100 -sand -soreen 12 GB 12 GB 0. 0. 0. 0. -sand	5		⊈ -grey ⊈		7	SS	100	18	263 •	14 ①	
-sandy, gravelly, medium plasticity, stiff 9 SS 80 14. 192. 15. 15. 9 SS 80 14. 192. 15. 15. 16. -brown 10 GB 10 GB 16. 16. 16. -brown 1192.8 11 SS 100 43. 192. 25. 25. 8 CLAY, some silt, trace coarse sand, medium plasticity, light brown, moist, stiff 7.8 11 SS 100 43. 192. 25. 25. 5. 12 GB 12 GB 0.	6				8	GB					- Sand
7 -brown 10 GB -construction	-				9	SS	80		192. ©	15 O	
8 1192.8 medium plasticity, light brown, moist, stiff 11 SS 100 13::::::::::::::::::::::::::::::::::::	7		-brown		10	GB					
stiff - silty 12 GB 23 CO CO CO CO CO CO CO CO CO C	8		CLAY, some silt, trace coarse sand,		11	SS	100	13			- Screen
	9		stiff		12	GB				23 0	

		NUMBER CGY-00092055-00 NAME Hawkwood Lands			_		IENT Highfield Land			
		DATE 2016-10-18			_		REHOLE LOCATION			
		CONTRACTOR _ Earth Drilling Co. Ltd.					EVATION			
		METHOD Solid Stem Auger			_				DRILLING	
		IT TYPE Truck Mounted Auger Drill			_				RILLING Dry	
		BY CS CHECKED BY MT							ING 28/10/201	
				5	SAMPLE	S	SPT N VALUE BLOWS/0.3m	– POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m
	S T		ELEV.	~		%	▲	•		
р Г	R A	SOIL DESCRIPTION	DEPTH	NUMBER	ТҮРЕ	RECOVERY	20 40 60 80 DYNAMIC CONE	100 200 300 400 FIELD VANE	20 40 60 80 PLASTIC & LIQUID LIMIT	4
+	Т		(m)	MUI	E	Š	BLOWS/0.3m	SHEAR (kPa)	MOISTURE CONTENT	
n)	A			2		REC		Peak Remold	PL MC LL 20 40 60 80	
_	<u>, 17.</u>	TOPSOIL, trace to some clay, silty,					20 40 60 80	40 80 120 160	20 40 60 80	. Kor kor
		_ sandy, some organics, dark brown,	1208.7	1	GB					
	XX	moist Grain Size Analysis:	0.3							
		Gravel = 0.2%		2	GB				22	
		Sand = 47.9% Silt = 40.5%		2						
		Clay = 11.4%								
	XX	CLAY, silty, trace sand, trace rootlets, medium plasticity, light brown, damp								
		to moist					· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		
		-occasional silt seams and lenses		3	SS	100				
					+				19	
				4	GB				19 ©	
										Cuttings
		-trace coarse round gravel, damp								
								· · · · · · · · · · · · · · · · · · ·		
		-very stiff					15			
		,		5	SS	100				
										Rea Rea
				6	GB				18	
.									0	
	XX		1204.7					· · · · · · · · · · · · · · · · · · ·		
		CLAY (TILL), silty, some sand, trace	4.3							
	MA.	sub-angular to rounded gravel, medium plasticity, brown, damp to					14			
		moist, stiff		7	SS	100				
]]])				-					
				8	GB				14. O	Bentonite
	HA	-occasional grey lenses								
	<i>4/\</i> }									
	H/A									Sand
							22			
				9	SS	40				
	<u>}</u>									
		economic		10	GB				15 Ô	
		-occasional coal fragments								
	HA									
	<i>[[/]</i>]				1		- 19			Screen
				11	SS	50				
									.15	
	Ŵ			12	GB				15 ①	
)))	-occasional cobbles		-						[2] [1]
	116		1		-	1	H	1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Langer in the second states in the	·······
	///						24			

	-	exp Services Inc.											
					_		IENT Highfield Land	*					
		NAME Hawkwood Lands			_		OJECT LOCATION _	<u> </u>					
		DATE <u>2016-10-18</u>			_								
		CONTRACTOR Earth Drilling Co. Ltd.			_	ELEVATION 1205.68m GROUND WATER LEVELS: $\overline{\Sigma}$ AT TIME OF DRILLING							
		S METHOD Solid Stem Auger			_	GR	OUND WATER LEVE						
		Truck Mounted Auger Drill			_			-	RILLING Dry				
GG	ED	BY <u>CS</u> CHECKED BY <u>MT</u>					1		ING 4.8m 28/10/2				
				S	SAMPLE	S	SPT N VALUE BLOWS/0.3m	POCKET PEN. (kPa)	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: m			
	S T					%] ▲) O		Casing Top Liev. III			
	R	SOIL DESCRIPTION	ELEV. DEPTH	ER	ш	R	20 40 60 80	100 200 300 400	20 40 60 80	_			
	A T		(m)	NUMBER	ТҮРЕ	Ň	DYNAMIC CONE BLOWS/0.3m	FIELD VANE SHEAR (kPa)	PLASTIC & LIQUID LIMIT MOISTURE CONTENT				
)	À			٦٢	-	RECOVERY	L	Peak Remold	PL MC LL				
						R	20 40 60 80	40 80 120 160	20 40 60 80				
Ē	<u>, 1, .</u>	TOPSOIL, some clay, trace to some	1205.4	1	GB								
	[]]	silt, sandy, some organics, dark /	0.2										
P	X/X	CLAY (TILL), silty, some sand to							11				
		sandy, some rounded to angular gravel, medium plasticity, very stiff,		2	GB				Ŏ	Cuttings			
ł	///	brown, damp to moist								12G 12G			
R	//												
ł	H/A												
ł))))	-some rounded gravel, some sand		~			23	239					
ľ				3	SS	40							
K	///	1			l				13				
K	//			4	GB				1 41 136				
P	KA	-trace sand, trace sulphates Grain Size Analysis:											
K	//	Gravel = 9.1%											
F	۴//	Sand = 19.2% Silt = 64.5%	1202.6										
P		Clay = 7.2%	3.0				19		18				
K		CLAY, silty, sandy, low to medium plasticity, brown, occasional grey	1202.2	5	SS	50			Ö				
F	HAAAA MAAAA MAAAA MAAAAA MAAAAA MAAAAA MAAAAA MAAAAAA	mottling, moist, very stiff	3.5		-								
	$\left \right \left \right $	SILT, trace to some sand, trace to	3.0	6	GB				18 �	- Bentonite			
		some clay, non to low plastic, stiff, brown with occasional grey mottling,		Ũ			· · · · · · · · · · · · · · · · · · ·						
	$\left \right \left \right $	moist to wet											
					-		15						
		⊻		7	SS	30							
			1200.5										
Þ	///	CLAY (TILL), silty, some sand, trace	5.2	8	GB			287 ©	.11 :Ô				
F	KA	fine to coarse rounded to sub-rounded gravel, medium		0				· · · · · · · · · · · · · · · · · · ·					
F	///	plasticity, very stiff, brown, moist											
ĺ	9/1	1								Sand			
þ		-occasional cobbles and boulders					50						
				9	SS	0							
K	X/X												
R.	IJ			40	05				12				
K	///	-some gravel		10	GB				0				
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
P	HA												
K	1/									- Screen			
k	6//	-occasional coal fragments		11	SS	10							
F					<u> </u>								
F	//												
×	X/X	8		12	GB								
ľ	///												
	Ø//	1											
	///#	1	1196.5										
		ð											
		CLAY, silty, trace sand, medium plasticity, light brown, occasional oxidation, moist, stiff	9.1 1196.1	13	SS	90	13		27				

APPENDIX B

PCSWMM Existing Conditions Analysis

• Schematic

• Input and Report Files

Single Storm Event

- Input File - Report File

To reduce the amount of data in the input file, the following sections have been excluded in this Appendix: Coordinates Vertices Polygons [TITLE] Ascension Pre-development Single Event Calgary 24h-100y [OPTIONS] ;;Options Value ;;-----FLOW_UNITS CMS INFILTRATION GREEN AMPT FLOW_ROUTING DYNWAV LINK_OFFSETS DEPTH DYNWAVE ALLOW_PONDING SKIP_STEADY_STATE NO START_DATE 08/ 08/25/2020 START_TIME 00:00:00 REPORT_START_DATE 08/25/2020 REPORT_START_TIME 00:00:00 END_DATE 08/28/2020 END_TIME 00:00:00 SWEEP START 01/01 SWEEP END 12/31 DRY DAYS 0 REPORT STEP 00:05:00 WET_STEP 00:05:00 DRY_STEP 00:30:00 ROUTING STEP 5 RULE_STEP 00:00:00 INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM STEP 0.5 THREADS 4 [EVAPORATION] Parameters ;;Type ;;-----CONSTANT 0 DRY_ONLY NO [RAINGAGES] Rain Time Snow Data Type Intrvl Catch Source ;; ;;Name ;----- ----- ----- ------Calgary_24h_100y INTENSITY 0:05 1.0 TIMESERIES Calgary_24h_100y [SUBCATCHMENTS] Total Pcnt. Pcnt. Curb Snow ;; Raingage Outlet Area Imperv Width Slope ;;Name Length Pack Calgary_24h_100yJ167.832221646.4134Calgary_24h_100yJ235.072201127.7239Calgary_24h_100yJ323.45690469.13810Calgary_24h_100yEx-Wetland27.84214.1647.4919 A1 0 A2 0 Α3 0 В 0 [SUBAREAS] ;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo PctRouted -----
 0.014
 0.3
 2

 0.014
 0.3
 2

 0.014
 0.3
 2

 0.014
 0.3
 2

 0.014
 0.3
 2

 0
 PERVIOUS
 100

 0
 OUTLET
 0

 0
 OUTLET
 100

 100
 OUTLET
 7.5 A1 A2 7.5 0 100 Α3 7.5 7.5

[INFILTRATION]

В

;;Subcatchment	Suctio	n H	lydCon	IMDmax												
;; A1	126	e	.99	0.21												
A2	270.53			0.21												
A3	270.69		.99	0.25												
В	213.88	1	.68	0.29												
[AQUIFERS]	Den	11274	F: .] J	11	Cand	Tere	University	1	1	Datta		Unnan	United			
;; ;;Name	Por- osity	Wilt Point	Field Capac	-	Cond Slope	Tens Slope	Upper Evap	Lower Evap	Lower Loss	Elev	m Water Table					
;;															-	
AquiferEast AquiferWest	0.453 0.453	0.185 0.185			0.1 0.1	0.1 0.1	0.5 0.5	0.1 0.1	0.15 0.044	0.0 0.0	2 2	0.307 0.307				
[GROUNDWATER] ;;Subcatchment ;;	Aquife	r 	Noc	le 		Elev	A1	B1 	A2	B2	A3	Depth	Elev	Ebot	Wgr	Umc
 A1	Aquife	nhlact	J1			3	0.6	1.9	0	0	0	0	2	*	*	*
A1 A2	Aquife		J2			3	0.6	1.9		0	0	0	2	*	*	*
A3	Aquife		J3			3	0.6	1.9		0	0	0	2	*	*	*
В	Aquife			Wetland		3	0.35	3.1		0	0	0	2	*	*	*
[JUNCTIONS]																
;;	Invert	Μ	lax.	Init.	9	Surchar	ge Pon	ded								
;;Name	Elev.		epth	Depth		Depth	Are									
;;																
J1	1192	2		0		100	0									
J2	1186	2		0		100	0									
J3 UpCulv	1166.5 1155.7			0 0		100 100	0 0									
[OUTFALLS]																
;;	Invert	C	utfall		e/Tab		Tide									
;;Name	Elev.	Т	уре	Time	Serie	es	Gate R	oute To								
;; OF-3	1153.4	 7 6	REE				NO			•						
OF-W	1197.5		REE				NO									
[STORAGE] ;;	Invert	Max	. Ir	it. S	torage	e Cui	rve				E	vap.				
;;Name ;;	Elev.	Dep	th De	pth C	urve	Pai	rams				F	rac.	Infilt	ration	parame	eters
Ex-Wetland	1197.5	1	0.	3 Т	ABULA	R We	tland			0	0					
[CONDUITS]																
;;	Inlet			let				nning	Inlet		utlet	Init	•	Max.		
;;Name	Node		Noc	le		Length	N		Offset	: 0 [.]	ffset 	Flow		Flow		
;; 1 	Ex-Wet	land	0F -	W		18.6	0.	015	0.3	0		0		0		
;Natural Channel C1	J1		J2			146.45	0.	A1	0	0		0		0		
;Natural Channel	L															
C2_1 ;Natural Channel	J2 L		33			352.28	0.	01	0	0		0		0		
C2_2	J3		UpC	ulv		305.17	0.	01	0	0		0		0		
ExCulvert	UpCulv		OF -	3		77.33	0.	022	0	0		0		0		
[XSECTIONS] ;;Link	Shape		Geom1		Geor	n2	Geom3	Geo	om4	Barre	ls					
;;	CIRCUL		0 1F				 0	 0		1						
1 C1	IRREGU		0.45 Sectior	18	0 0		0	0		1 1						
C2_1	IRREGU		Section		0		0	0		1						
C2_2	IRREGU		Section		ø		õ	õ		1						
ExCulvert	CIRCUL		0.63		0		0	0		1						
[TRANSECTS]																
NC 0.35 0.35	5 0.0	07														
NC 0.35 0.35 X1 Section18	5 0. 8		72.899	74.312	0.0	(0.0	0.0	0.0	, ,	0.0					
	8 507 11	88.46	72.899 69.488 75.614	74.312 1188.2 1189.3	2 72	.899		0.0 73.041		, 7.74 7						
X1 Section18 GR 1189.24 65.5	8 507 11 312 11	88.46 88.47	69.488	1188.2	2 72	.899										
X1 Section18 GR 1189.24 65.5 GR 1188.19 74.3	8 507 11 312 11 5 0.0	88.46 88.47 07	69.488	1188.2	2 72 7 79 0.0	.899 : .324			l 1187 0.0	7.74 7)						

[LOSSES] ;;Link ;;	Inlet	Outlet	Average	Flap Gate	SeepageRate
[CURVES] ;;Name	Туре				
;; OGS OGS OGS OGS OGS	Rating	0	0 0.0066 0.0098 0.0122 0.0142		
R33 R33 R33 R33 R33 R33 R33 R33	Rating	0 0.25 0.5 0.75 1 1.25 1.5	0 0.0043 0.0062 0.0077 0.009 0.0101 0.0111		
R96 R96 R96 R96 R96 R96 R96	Rating	0 0.25 0.5 0.75 1 1.25 1.5	0 0.0303 0.0492 0.0626 0.0736 0.0831 0.0917		
Wetland Wetland Wetland Wetland Wetland	Storage	0 0.25 0.5 0.75 1	1018 7072 8482 9674 11306		
[TIMESERIES] ;;Name ;;	y design st			minutes, r	ain units = mm/hr.
Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y		23:50 23:55 24:00	1.085 1.081 1.077		
[REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL	L				
[TAGS]					
[MAP] DIMENSIONS UNITS	-19799.633 Meters	0607589 566	6764.723930	14 -17942.8	048367753 5668793.47605977
[COORDINATES] ;;Node ;;	X-Coord	Y-Cc	oord	-	
[VERTICES] ;;Link ;;		Y-Co		-	
[POLYGONS] ;;Subcatchment ;;				-	
[SYMBOLS] ;;Gage ;;		Y-Cc		-	

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Ascension Pre-development Single Event Calgary 24h-100y

Raingage Summary

Name	Data Source	Data Type	Recording Interval
Calgary_24h_100y	Calgary_24h_100y	INTENSITY	5 min.

Subcatchment Summary

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
A1 A2 A3 B	67.83 35.07 23.46 27.84	1646.41 1127.72 469.14 647.49	0.00 0.00	4.0000 Calgary_24h_100y 9.0000 Calgary_24h_100y 10.0000 Calgary_24h_100y 9.0000 Calgary_24h_100y	J1 J2 J3 Ex-Wetland

*********** Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
J1	JUNCTION	1192.00	2.00	0.0	
J2	JUNCTION	1186.00	2.00	0.0	
33	JUNCTION	1166.50	2.00	0.0	
UpCulv	JUNCTION	1155.74	2.00	0.0	
0F-3	OUTFALL	1153.47	0.63	0.0	
OF-W	OUTFALL	1197.50	0.45	0.0	
Ex-Wetland	STORAGE	1197.50	1.00	0.0	

Link Summary *****

Name	From Node	To Node	Туре	Length	%Slope R	oughness
1 C1	Ex-Wetland	0F-W J2	CONDUIT	18.6 146.4	1.6131 4.1004	0.0150
C2_1	J2	J3	CONDUIT	352.3	5.5439	0.0700
C2_2 ExCulvert	J3 UpCulv	UpCulv OF-3	CONDUIT CONDUIT	305.2 77.3	3.5281 2.9367	0.0700 0.0220

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
1	CIRCULAR	0.45	0.16	0.11	0.45	1	0.31
C1	Section18 Section6	1.63 1.99	10.77 8.68	0.20	13.82 6.94	1	10.53 10.22
C2_1 C2_2	Section6	1.99	8.68	0.21 0.21	6.94	1	8.15
ExCulvert	CIRCULAR	0.63	0.31	0.16	0.63	1	0.71

0.0133 0.0304 0.0511 0.1004 0.1923 0.3091 0.4487 0.6110 0.7961 1.0000 0.6094 1.0356 1.4092 1.2861 1.0387 0.9637 0.9443 0.9473 0.9614 1.0000 0.0735 0.0895 0.1246 0.3472 0.5038 0.6127 0.7215 0.8303 0.9392 1.0000

0.0127 0.0291 0.0760 0.1680 0.2786 0.4060 0.5464 0.6923 0.8435 1.0000 0.5878 0.9113 0.7601 0.6532 0.6760 0.7215 0.7866 0.8588 0.9305 1.0000 0.0913 0.1140 0.4748

0.6422

0.7479

0.8535

0.9000

0.9333

0.9667

1.0000

Transact C	action10			
Transect Se	200100110			
Area:				
	0.0021	0.0047	0.0075	0.0103
	0.0165	0.0198	0.0232	0.0267
	0.0342	0.0381	0.0422	0.0464
	0.0572	0.0652	0.0751	0.0868
	0.1159	0.1332	0.1520	0.1717
	0.2139	0.2363	0.2597	0.2840
	0.3352	0.3622	0.3901	0.4190
	0.4793	0.5109	0.5434	0.5767
	0.6462	0.6823	0.7194	0.7573
	0.8359	0.8763	0.9171	0.9584
Hrad:				
	0.1322	0.2706	0.3943	0.5064
	0.7050	0.7944	0.8788	0.9590
	1.1091	1.1800	1.2485	1.3210
	1.4583	1.4527	1.4120	1.3526
	1.2195	1.1566	1.1062	1.0681
	1.0157	0.9977	0.9835	0.9724
	0.9570	0.9520	0.9483	0.9458
	0.9436	0.9437	0.9444	0.9456
	0.9495	0.9520	0.9548	0.9580
	0.9651	0.9731	0.9817	0.9907
	0.9051	0.9751	0.9817	0.9907
Width:				
	0.0607	0.0639	0.0671	0.0703
	0.0767	0.0799	0.0831	0.0863
	0.0927	0.0959	0.0990	0.1039
	0.1692	0.2137	0.2582	0.3027
	0.3917	0.4362	0.4603	0.4820
	0.5256	0.5474	0.5691	0.5909
		0.6562		0.6997
	0.6344		0.6780	
	0.7433	0.7650	0.7868	0.8086
	0.8521	0.8739	0.8956	0.9174
	0.9609	0.9708	0.9805	0.9903
Transect Se	ection6			
Area:				
	0.0023	0.0047	0.0072	0.0099
	0.0157	0.0188	0.0221	0.0255
	0.0328	0.0387	0.0493	0.0618
	0.0920	0.1097	0.1285	0.1479
	0.1888	0.2102	0.2323	0.2551
	0.3027	0.3276	0.3530	0.3792
	0.4335	0.4614	0.4896	0.5179
	0.5752	0.6041	0.6333	0.6627
	0.7221	0.7522	0.7824	0.8128
	0.8744	0.9055	0.9368	0.9683
. است. ا	0.0/44	0.9033	0.9300	0.9005
Hrad:	0.4677	0 2001	0 4505	0
	0.1677	0.3004	0.4104	0.5047
	0.6627	0.7312	0.7949	0.8546
	0.9653	0.9750	0.8867	0.8151
	0.7176	0.6850	0.6662	0.6567
	0.6536	0.6568	0.6620	0.6685
	0.6843	0.6931	0.7023	0.7118
	0.7317	0.7449		0.7725
			0.7585	
	0.8010	0.8154	0.8299	0.8444
	0.8733	0.8877	0.9021	0.9163
	0.9446	0.9586	0.9725	0.9863
Width:				
	0.0731	0.0776	0.0822	0.0867
	0.0958	0.1004	0.1049	0.1095
	0.1186	0.2711	0.3653	0.4201
	0.5296 0.6633	0.5788 0.6845	0.5999 0 7056	0.6211 0 7267
	M 0011	ראמ או	מכואי וא	

0.6845

0.7901

0.8800

0.9133

0.9467

0.9800

0.7056

0.8113

0.8866

0.9200

0.9533

0.9867

0.7267

0.8324

0.8933

0.9266

0.9600

0.9933

0.6633

0.7690

0.8733

0.9066

0.9400

0.9733

Analysis Options	

Flow Units	CMS
Process Models: Rainfall/Runoff	VEC
RDII	YES NO
Snowmelt	NO
Groundwater	YES
Flow Routing	YES
Ponding Allowed	NO
Water Quality	NO
Infiltration Method	GREEN_AMPT
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	08/25/2020 00:00:00
Ending Date	08/28/2020 00:00:00
Antecedent Dry Days Report Time Step	0.0 00:05:00
Wet Time Step	00:05:00
Dry Time Step	00:30:00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m
*****	Volume Depth
Runoff Quantity Continuity	Volume Depth hectare-m mm

Total Precipitation	13.827 89.667
Evaporation Loss	0.000 0.000
Infiltration Loss	9.160 59.402
Surface Runoff	4.675 30.320
Final Storage	0.003 0.018
Continuity Error (%)	-0.081
*****	Volume Depth
Groundwater Continuity	hectare-m mm

Initial Storage	187.049 1213.000
Infiltration	9.160 59.402
Upper Zone ET	0.000 0.000
Lower Zone ET	0.000 0.000
Deep Percolation	0.488 3.164
Groundwater Flow Final Storage	8.201 53.185 187.520 1216.054
Continuity Error (%)	-0.000
	0.000
*****	Volume Volume
Flow Routing Continuity	hectare-m 10^6 ltr

Dry Weather Inflow	0.000 0.000
Wet Weather Inflow	4.675 46.748
Groundwater Inflow RDII Inflow	8.201 82.015 0.000 0.000
External Inflow	0.000 0.000
External Outflow	12.866 128.664
Flooding Loss	0.000 0.000
Evaporation Loss	0.000 0.000
Exfiltration Loss	0.000 0.000
Initial Stored Volume	0.137 1.372
Final Stored Volume	0.175 1.751
Continuity Error (%)	-0.216

Link 1 (35.55%)

***** Highest Flow Instability Indexes ****** Link C2_2 (2) Link C2_1 (2)

***** Routing Time Step Summary **********

***** Subcatchment Runoff Summary

	Total	Total	Total	Total	Imperv	Perv	Total	Total	Peak
Runoff									
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	Runoff
Coeff									
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr	CMS
A1	89.67	0.00	0.00	54.47	1.75	35.21	35.21	23.88	1.92
0.393									
A2	89.67	0.00	0.00	62.12	0.00	27.66	27.66	9.70	1.31
0.308									
A3	89.67	0.00	0.00	65.21	0.00	24.53	24.53	5.75	0.62
0.274									
В	89.67	0.00	0.00	63.11	3.68	22.96	26.64	7.42	0.91
0.297									

***** Groundwater Summary

Subcatchment	Total Infil mm	Total Evap mm	Total Lower Seepage mm	Total Lateral Outflow mm	Maximum Lateral Outflow CMS	Average Upper Moist.	Average Water Table m	Final Upper Moist.	Final Water Table m
A1	54.47	0.00	2.15	51.48	0.41	0.31	2.04	0.31	2.01
A2	62.12	0.00	2.16	59.25	0.32	0.31	2.04	0.31	2.00
A3	65.21	0.00	2.16	62.34	0.23	0.31	2.04	0.31	2.00
В	63.11	0.00	7.74	41.99	0.16	0.31	2.15	0.31	2.09

Node Depth Summary

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Max Occurrence days hr:min		Reported Max Depth Meters
J1	JUNCTION	0.62	37.87	1229.87	0	08:12	36.99
J2	JUNCTION	0.98	43.63	1229.63	0	08:12	42.75
J3	JUNCTION	2.33	61.12	1227.62	0	08:12	60.26
UpCulv	JUNCTION	3.57	69.34	1225.08	0	08:12	68.52
OF-3	OUTFALL	0.27	0.63	1154.10	0	07:33	0.63
OF-W	OUTFALL	0.14	0.40	1197.90	0	09:33	0.40
Ex-Wetland	STORAGE	0.44	0.71	1198.21	0	09:33	0.71

Node Inflow Summary *****

		Maximum Lateral Inflow	Maximum Total Inflow		of Max	Lateral Inflow Volume	Total Inflow Volume	Flow Balance Error
Node	Туре	CMS	CMS		hr:min	10^6 ltr	10^6 ltr	Percent
J1	JUNCTION	2.241	2.241	0	07:45	58.8	58.8	-0.157
J2	JUNCTION	1.492	3.690	0	07:40	30.5	89.4	-0.080
J3	JUNCTION	0.750	4.381	0	07:41	20.4	110	-0.141
UpCulv	JUNCTION	0.000	3.960	0	08:12	0	110	0.046
OF-3	OUTFALL	0.000	3.960	0	08:12	0	110	0.000
OF-W	OUTFALL	0.000	0.337	0	09:33	0	18.7	0.000
Ex-Wetland	STORAGE	0.918	0.918	0	07:15	19.1	20.5	0.002

***** Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
J1	JUNCTION	1.34	36.237	0.000
J2	JUNCTION	2.16	41.638	0.000
J3	JUNCTION	4.17	59.126	0.000
UpCulv	JUNCTION	9.89	67.346	0.000

***** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary ******

Storage Unit	Average Volume 1000 m3	0	Evap Pcnt Loss	Pcnt	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
Ex-Wetland	2.475	32	0	0	4.800	61	0 09:33	0.337

***** Outfall Loading Summary ***********

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
OF-3	98.48	0.519	3.960	109.923
OF-W	97.30	0.085	0.337	18.740
System	97.89	0.604	0.337	128.664

Link Flow Summary *****

Link	Туре	Maximum Flow CMS	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
1	CONDUIT	0.337	0 09:33	2.25	1.07	0.89
C1	CHANNEL	2.239	0 07:47	1.05	0.21	1.00
C2_1	CHANNEL	3.631	0 07:41	0.80	0.36	1.00
C2_2	CHANNEL	3.960	0 08:12	1.13	0.49	1.00
ExCulvert	CONDUIT	3.960	0 08:12	12.70	5.59	1.00

LGN Consulting Engineering Ltd.

	Adjusted			Fract	ion of	 Time	in Flo	w Clas	 s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
1	1.00	0.00	0.00	0.00	0.03	0.96	0.00	0.00	0.26	0.00
C1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.96	0.00
C2_1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.93	0.00
C2_2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.17	0.00
ExCulvert	1.00	0.01	0.00	0.00	0.26	0.74	0.00	0.00	0.17	0.00

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
1	0.01	0.01	0.01	2.19	0.01
C1	1.34	1.34	2.70	0.01	0.01
C2_1	2.16	2.16	4.17	0.01	0.01
C2_2	4.17	4.17	9.89	0.01	0.01
ExCulvert	0.01	14.88	0.01	15.03	0.01

Analysis begun on: Tue Aug 25 08:44:15 2020 Analysis ended on: Tue Aug 25 08:44:16 2020 Total elapsed time: 00:00:01

Continuous Simulation

- Input File - Report File

To reduce the amount of data in the input file, the following sections have been excluded in this Appendix:

Coordinat
Vertices
Polygons Coordinates

[TITLE]

Ascension Pre-development Continuous Simulation Calgary 1960-2014

[OPTIONS]								
;;Options ;;	Value							
FLOW UNITS	CMS							
INFILTRATION	GREEN_AMPT							
FLOW_ROUTING	DYNWAVE							
LINK_OFFSETS	DEPTH							
MIN_SLOPE	0							
ALLOW_PONDING SKIP_STEADY_STAT	NO E NO							
START_DATE	01/01/1960							
START_TIME	01:00:00							
REPORT_START_DAT	E 01/01/1960							
REPORT_START_TIM								
END_DATE	12/31/2014							
END_TIME SWEEP_START	23:00:00 01/01							
SWEEP_END	12/31							
DRY_DAYS	0							
REPORT_STEP	01:00:00							
WET_STEP	00:15:00							
DRY_STEP	01:00:00							
ROUTING_STEP	60							
RULE_STEP INERTIAL_DAMPING	00:00:00 PARTIAL							
NORMAL_FLOW_LIMI								
FORCE_MAIN_EQUAT								
VARIABLE_STEP	0.75							
LENGTHENING_STEP	0							
MIN_SURFAREA	0							
MAX_TRIALS HEAD_TOLERANCE	8 0.0015							
SYS FLOW TOL	5							
LAT_FLOW_TOL	5							
MINIMUM_STEP	0.5							
THREADS	4							
[EVAPORATION]								
	Parameters							
;;								
MONTHLY 0.1	0 0.39 1.12	2.40 3.61	4.57 4.99	4.00	2.24 0	.99 0.3	27 0.07	
DRY_ONLY NO								
[TEMPERATURE]	Tama (0, 14							
	-Temp60-14 THLY 14.8 14.6	5 15.0 16.5 16.6	15 6 14 0	13 2 14 1	14 6 13	7149		
SNOWMELT		1200 50.0 0.0	15:0 14:0	19.2 14.1	14.0 15.	/ 14.5		
	ERVIOUS 1.0 1.0 1		1.0 1.0 1.0	1.0				
ADC PER'	VIOUS 0.10 0.35	0.53 0.66 0.75	0.82 0.87	0.92 0.95	0.98			
[RAINGAGES]	Rain Time	Snow Data						
;; ;;Name		. Catch Source						
;;								
YYC-Pre60-14	INTENSITY 1:00	1.0 FILE	"D:\L	.GN\PCSWMM	\STA.3031	093 2014	.dat" STA	.3031093 MM
[SUBCATCHMENTS]			Total	Pcnt.		Pcnt.	Curb	Snow
;; ;;Name	Raingage	Outlet	Area	Imperv	Width	Slope	Length	Pack
;;								
A1	YYC-Pre60-14	J1	67.8322	2	1646.413	4	0	Snowpack
A2	YYC-Pre60-14	J2	35.0722		1127.723		0	Snowpack
A3	YYC-Pre60-14	J3	23.4569		469.138		0	Snowpack
В	YYC-Pre60-14	Ex-Wetland	27.8421	4.1	647.491	9	0	Snowpack
[SUBAREAS]								
;;Subcatchment	N-Imperv N-Per	v S-Imperv	S-Perv	PctZero	Route	To Pc [.]	tRouted	
;;		·						

A1 A2 A3	0.014 0.014 0.014	0.3 0.3 0.3	2 2 2	7. 7. 7.	5	0 0 0		PERVIOL OUTLET OUTLET	IS 100)					
В	0.014	0.3	2	7.		10	0	OUTLET							
[INFILTRATION] ;;Subcatchment	Suction	HydCon	IMDma	ix											
;; A1 A2 A3 B	126 270.53 270.69 213.88	0.99 1 0.99 1.68	0.21 0.21 0.25 0.29												
[AQUIFERS] ;; ;;Name ;;	Por- Wil osity Poi		-		Tens Slope	Uppe Evap	r Lowe Evap		Botton Elev	Water Table					
,, AquiferEast AquiferWest	0.453 0.1 0.453 0.1		3.663 3.663		0.1 0.1	0.5 0.5	0.1 0.1	0.15 0.044	0.0 0.0	2 2	0.307 0.307				
[GROUNDWATER] ;;Subcatchment ;;	Aquifer	No	de	E.	lev 	A1 	B1 	A2	B2	A3 	Depth	Elev 	Ebot	Wgr	Umc
A1 A2 A3 B	AquiferWes AquiferWes AquiferWes AquiferEas	st J2 st J3	-Wetland	3 3 3 1 3		0.6 0.6 0.6 0.35	1.9 1.9 1.9 3.1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	* * *	* * *	* * *	* * *
[SNOWPACKS] Snowpack Snowpack Snowpack Snowpack Snowpack	PLOWABLE IMPERVIOUS PERVIOUS REMOVAL	0.05 5 0.05 0.05 25	0.2 0.2 0.2 0.0	0.0 0.0 0.0	9 9	0.: 0.: 0.:	10 10	0.00 0.00 0.00 0.0	0.0 0.0 0.0	90 90	0.3 25 25				
[JUNCTIONS] ;; ;;Name	Invert Elev.	Max. Depth	Init. Deptł		rcharg oth	Ar	nded ea								
;; J1 J2	1192 1186	2 2	0 0	100 100		0 0		-							
[OUTFALLS] ;; ;;Name	Invert Elev.	Outfall Type		nge/Table ne Series		Tide Gate∣	Route T	ō							
;; OF-3 OF-W	1153.47 1197.5	FREE FREE				NO NO									
[STORAGE] ;; ;;Name	Elev. D	Depth De	nit. epth	Storage Curve	Cur Par	ve ams				F	vap. rac.		tration		
;; Ex-Wetland	1197.5 1		.3	TABULAR	Wet	land			0	1					
;Junction J3	1166.5 2	2 0		FUNCTION	AL 100	0	0	0	150	0					
;Junction UpCulv	1155.74 2	2 0		FUNCTION	AL 100	00	0	0	200	0					
[CONDUITS] ;; ;;Name ;;	Inlet Node	Ou ⁻ Noe	tlet de	Le	ength	M; N	anning	Inlet Offset		itlet fset	Init Flow		Max. Flow		
;Culvert 1	Ex-Wetland	d OF	- W	18	8.6	0	.015	0.3	0		0		0		
;Natural Channel C1	J1	J2		14	46.45	0	.01	0	0		0		0		
;Natural Channel C2_1	J2	J3		3!	52.28	0	.01	0	0		0		0		
;Natural Channel C2_2	J3	Up	Culv	30	05.17	0	.01	0	0		0		0		
;Culvert ExCulvert	UpCulv	OF	- 3	7	7.33	0	.022	0	0		0		0		
[XSECTIONS] ;;Link	Shape	Geom1		Geom2		Geom3	G	ieom4	Barrel	ls					
;; 1 C1	CIRCULAR IRREGULAR	0.45 Section	n18	0 0		0 0	 e e		1 1						

C2_1 C2_2 ExCulvert	I	RREGULAR RREGULAR IRCULAR	Section6 Section6 0.63		0 0 0	(9 9 9	0 0 0	1 1 1					
[TRANSECTS]														
NC 0.35 X1 Section1 GR 1189.24 GR 1188.19	65.507	8 1188.46		74.312 1188.22 1189.37	72.8	399 13		0.0 73.041	0.0 1187.74					
NC 0.35 X1 Section6 GR 1177.03 GR 1176.26	80.013	1176.29		1176.24	83.3	111 1:		0.0 83.269	0.0 1175.8					
[LOSSES] ;;Link			Outlet	Average		lap Gate								
;; [CURVES] ;;Name			X-Value											
;;														
OGS OGS OGS OGS	Ra		0 0.25 0.5 0.75	0 0.0066 0.0098 0.0122										
OGS			1	0.0142										
R33 R33 R33	Ra	0	0 0.25 0.5	0 0.0043 0.0062										
R33			0.75	0.0077										
R33 R33			1 1.25	0.009 0.0101										
R33			1.5	0.0111										
R96	Ra	ating	0	0										
R96 R96			0.25 0.5	0.0303 0.0492										
R96			0.75	0.0492										
R96			1	0.0736										
R96 R96			1.25 1.5	0.0831 0.0917										
	C													
Wetland Wetland	2		0 0.25	1018 7072										
Wetland			0.5	8482										
Wetland Wetland			0.75 1	9674 11306										
	_		-	11500										
[TIMESERIES ;;Name	-	ate	Time	Value										
;; YYC-Temp60-:	 14 F:	 ILE "D:∖	LGN\PCSWMM	\TEMPERA	 TURE I	DATA 196	50-2014	.dat"						
	YES NO TS ALL	_												
[ADJUSTMENT: ;;Parameter ;;	Sub	catchment	Month]	y Adjust	ments									
CONDUCTIVIT			0.05		0.05	0.05	1.0	1.0	1.0 1	L.0	1.0	1.0	0.05	0.05
[TAGS]														
[MAP] DIMENSIONS UNITS		19799.6333 eters	5666	5764.724		-17942.8	8047	56687	93.476					
[COORDINATE: ;;Node		-Coord	Y-Co	ord										

;;Link ;;	X-Coord	Y-Coord
<pre>[POLYGONS] ;;Subcatchment ;;</pre>	X-Coord	Y-Coord
[SYMBOLS] ;;Gage ;;	X-Coord	Y-Coord

EPA STORM WATER	MANAGEMENT MODEL	- VERSION 5.	1 (Build	5.1.013)				
Ascension Pre-de Continuous Simul Calgary 1960-201	lation								
************ Element Count **************** Number of subcat Number of subcat Number of links Number of pollut Number of land of	tchments 4 7 5 tants 0								
**************************************	/								
Name	Data Source			ata ype	Recordi Interva				
 YYC-Pre60-14	 D:\ והא/פרי	 SWMM\STA.3031							
				uut					
**************************************	nmary								
Name	Area	Width %	Imperv	%Slope	Rain Gage	e	0	utlet	
A1	67.83	1646.41	2.00		YYC-Pre6		J		
A2 A3	35.07 23.46	1127.72 469.14	0.00 0.00		YYC-Pre6		J		
В	27.84	647.49	4.10	9.0000	YYC-Pre6	0-14	E	x-Wetland	
*********** Node Summary *****									
Name	Туре	Inve Ele	v. De	Max. F epth	Ponded Area	Externa Inflow			
J1	JUNCTION	1192.		2.00	0.0		-		
J2 OF-3	JUNCTION OUTFALL	1186. 1153.		2.00 0.63	0.0 0.0				
OF-W	OUTFALL	1195.		ð.45	0.0				
Ex-Wetland J3	STORAGE STORAGE	1197. 1166.		1.00 2.00	0.0 0.0				
UpCulv	STORAGE	1155.		2.00	0.0				

Link Summary *****									
Name	From Node	To Node	Ту	ре 	Len	gth %	%Slope	Roughness	
1	Ex-Wetland	OF-W		NDUIT			1.6131	0.0150	
C1 C2 1	J1 J2	J2 J3		NDUIT NDUIT			4.1004 5.5439	0.0700 0.0700	
C2_2	J3	UpCulv	CO	NDUIT NDUIT			8.5281	0.0700 0.0220	
ExCulvert	UpCulv	0F-3	COI	NDUTI		/.5 2	2.9367	0.0220	
**************************************	ummary								
Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels		ull low	
1	CIRCULAR	0.45	0.16	0.11	0.45	1		.31	
C1 C2 1	Section18 Section6	1.63 1.99	10.77 8.68	0.20 0.21	13.82 6.94	1		.53 .22	
C2_2	Section6	1.99	8.68	0.21	6.94	1	L 8	.15	
ExCulvert	CIRCULAR	0.63	0.31	0.16	0.63	1	L 0	.71	

*****	*****				
Transect S					
Transect S	ection18				
Area:					
	0.0021	0.0047	0.0075	0.0103	0.013
	0.0165	0.0198	0.0232	0.0267	0.030
	0.0342	0.0381	0.0422	0.0464	0.051
	0.0572	0.0652	0.0751	0.0868	0.100
	0.1159	0.1332	0.1520	0.1717	0.192
				0.2840	
	0.2139	0.2363	0.2597		0.309
	0.3352	0.3622	0.3901	0.4190	0.448
	0.4793	0.5109	0.5434	0.5767	0.611
	0.6462	0.6823	0.7194	0.7573	0.796
	0.8359	0.8763	0.9171	0.9584	1.000
Hrad:					
	0.1322	0.2706	0.3943	0.5064	0.609
	0.7050	0.7944	0.8788	0.9590	1.035
	1.1091	1.1800	1.2485	1.3210	1.409
	1.4583	1.4527	1.4120	1.3526	1.286
	1.2195	1.1566	1.1062	1.0681	1.038
	1.0157	0.9977	0.9835	0.9724	0.963
	0.9570	0.9520	0.9483	0.9458	0.944
	0.9436	0.9437	0.9444	0.9456	0.947
	0.9495	0.9520	0.9548	0.9580	0.961
	0.9651	0.9731	0.9817	0.9907	1.000
ui d+h .	0.9031	0.9731	0.9817	0.9907	1.000
Width:	0.0007	0.0620	0.0671	0 0702	0 070
	0.0607	0.0639	0.0671	0.0703	0.073
	0.0767	0.0799	0.0831	0.0863	0.089
	0.0927	0.0959	0.0990	0.1039	0.124
	0.1692	0.2137	0.2582	0.3027	0.347
	0.3917	0.4362	0.4603	0.4820	0.503
	0.5256	0.5474	0.5691	0.5909	0.612
	0.6344	0.6562	0.6780	0.6997	0.721
	0.7433	0.7650	0.7868	0.8086	0.830
	0.8521	0.8739	0.8956	0.9174	0.939
	0.9609	0.9708	0.9805	0.9903	1.000
Transact (actions				
Transect S Area:	ectione				
	0.0023	0.0047	0.0072	0.0099	0.012
	0.0157	0.0188	0.0221	0.0255	0.029
	0.0328	0.0387	0.0493	0.0618	0.076
	0.0920	0.1097	0.1285	0.1479	0.168
	0.1888	0.2102	0.2323	0.2551	0.278
	0.3027	0.3276	0.3530	0.3792	0.406
	0.4335	0.4614	0.4896	0.5179	0.400
					0.692
	0.5752	0.6041	0.6333	0.6627	
	0.7221	0.7522	0.7824	0.8128	0.843
	0.8744	0.9055	0.9368	0.9683	1.000
Hrad:					
	0.1677	0.3004	0.4104	0.5047	0.587
	0.6627	0.7312	0.7949	0.8546	0.911
	0.9653	0.9750	0.8867	0.8151	0.760
	0.7176	0.6850	0.6662	0.6567	0.653
	0.6536	0.6568	0.6620	0.6685	0.676
	0.6843	0.6931	0.7023	0.7118	0.721
	0.7317	0.7449	0.7585	0.7725	0.786
	0.8010	0.8154	0.8299	0.8444	
					0.858
	0.8733	0.8877	0.9021	0.9163	0.930
	0.9446	0.9586	0.9725	0.9863	1.000
Width:	0.0704	0 0770	0 0000	0.0077	0 00-
	0.0731	0.0776	0.0822	0.0867	0.091
	0.0958	0.1004	0.1049	0.1095	0.114
	0.1186	0.2711	0.3653	0.4201	0.474
	0.5296	0.5788	0.5999	0.6211	0.642
	0.6633	0.6845	0.7056	0.7267	0.747
	0.7690	0.7901	0.8113	0.8324	0.853
	0.8733	0.8800	0.8866	0.8933	0.900
	0.9066	0.9133	0.9200	0.9266	0.933
	0.9400	0.9467	0.9533	0.9600	0.966
		0.2407	0	0.000	0.500

1.0000

Rainfall File Summary

0.9800

0.9867

0.9933

0.9733

Station ID	First Date	Last Date	Recording Frequency	Periods w/Precip	Missing	Periods Malfunc
	3 01/01/1960		60 mi			(
********	******	******	******	******		
		stics display			2	
		at every comp				
not just or *********	1 results tro ************	om each report	ing time s	tep. *********	:	
********	*****					
Analysis Op						
Flow Units Process Mod		CMS				
	Runoff	YES				
RDII		NO				
	ter 					
	Allowed					
	ality					
	on Method ng Method	GREEN_AMP	т			
	Method					
Starting Da	ate	01/01/196				
		12/31/201	.4 23:00:00			
	Dry Days Step	01:00:00				
		00:15:00				
-		01:00:00				
	ne Step ime Step	60.00 sec				
	ials					
	Threads					
Head Tolera	ance	0.001500	m			
********	******	**** Vc	lume	Depth		
Runoff Quar	ntity Continu			mm		
	**************************************		.000	0.000		
	ipitation			2903.400		
•	Loss			1958.236		
	on Loss noff			9818.574 1242.618		
	ed		.000	0.000		
	Cover		.401	2.600		
	age		.001	0.009		
Continuity	Error (%)	··· -e	.518			
*******	******	**** Vc	lume	Depth		
	Continuity	hecta		mm		
	**************************************		.049	1213.000		
	orage on			9818.574		
	ET			8463.508		
	ET Lation		0.000 .891	0.000 1607.556		
	r Flow		.000	0.000		
Final Stora	age	148	.105	960.451		
Continuity	Error (%)	e	.000			
*******	******	·*** Vo	lume	Volume		
	ng Continuity			10^6 ltr		

	י Inflow י Inflow		.000 360	0.000 1913.621		
	r Inflow		.000	0.000		
	۷		.000	0.000		
	nflow utflow		0.000 0.890	0.000 1668.919		
	DSS			1.916		
LTOOUTUS LO						

LGN Consulting Engineering Ltd.

Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)	0.137	0.000 1.372 0.875

**************************************	dexes	
**************************************	: 1.61 sec : 55.97 sec : 60.00 sec : 0.00 : 2.00 : 0.01	

***** Subcatchment Runoff Summary ***********

	Total	Total	Total	Total	Imperv	Perv	Total	Total	Peak
Runoff					F -				
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	Runoff
Coeff									
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr	CMS
								10 0 10	615
A1	22903.40	0.00	2446.13	19285.00	292.54	1312.59	1312.59	890.36	4.20
	22903.40	0.00	2440.15	19203.00	292.94	1312.39	1312.39	090.50	4.20
0.057	22002 40	0.00	1002 01	10050 00	0.00	4477 40	4477 40	442 07	2 4 2
A2	22903.40	0.00	1883.81	19958.99	0.00	1177.49	1177.49	412.97	3.13
0.051									
A3	22903.40	0.00	1755.90	20244.75	0.00	1008.75	1008.75	236.62	1.62
0.044									
В	22903.40	0.00	1033.78	20582.59	838.95	512.27	1351.22	376.21	1.88
0.059									

***** Groundwater Summary *********

Subcatchment	Total Infil mm	Total Evap mm	Total Lower Seepage mm	Total Lateral Outflow mm	Lateral	Average Upper Moist.	Average Water Table M	Final Upper Moist.	Final Water Table m
A1 A2 A3 B	19285.00 1 19958.99 1 20244.75 1 20582.59 1	L8790.44 L8822.86	1413.78 1658.51	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.27 0.27 0.27 0.27 0.29	0.18 0.20 0.23 0.11	0.30 0.30 0.30 0.30 0.30	0.45 0.45 0.51 0.08

Node Depth Summary ******

Node	Туре	Average Depth Meters	HGL	Time of Max Occurrence days hr:min	Reported Max Depth Meters
J1 J2	JUNCTION JUNCTION	0.01 0.01	 1289.19 1288.00	17322 19:04 17322 19:04	55120

0F-3	OUTFALL	0.01	0.63	1154.10	2028	17:24	0.63
OF-W	OUTFALL	0.00	0.42	1197.92	17322	21:05	0.42
Ex-Wetland	STORAGE	0.22	0.93	1198.43	17322	21:05	0.93
J3	STORAGE	0.02	118.40	1284.90	17322	19:04	81.93
UpCulv	STORAGE	0.02	123.77	1279.51	17322	19:04	89.44

Node Inflow Summary *********

		Maximum Lateral Inflow	Maximum Total Inflow	Time o		Lateral Inflow Volume	Total Inflow Volume	Flow Balance Error
Node	Туре	CMS	CMS	days h	r:min	10^6 ltr	10^6 ltr	Percent
J1	JUNCTION	4.200	6.037	17322	19:01	889	889	-0.028
J2	JUNCTION	3.130	7.189	17322	19:00	412	1.3e+03	-0.284
0F-3	OUTFALL	0.000	5.812	17322	19:04	0	1.54e+03	0.000
OF-W	OUTFALL	0.000	0.413	17322	21:05	0	133	0.000
Ex-Wetland	STORAGE	1.876	1.876	17322	19:00	376	377	0.001
J3	STORAGE	1.623	7.873	17322	18:58	236	1.54e+03	-0.054
UpCulv	STORAGE	0.000	8.235	17322	18:58	0	1.54e+03	0.248

***** Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
J1	JUNCTION	2.13	95.561	0.000
J2	JUNCTION	2.59	100.010	0.000
J3	STORAGE	8.93	116.408	0.000
UpCulv	STORAGE	25.40	121.776	0.000

***** Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate CMS	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 ltr	Maximum Ponded Depth Meters
J2	0.46	2.611	17322 19:04	1.916	100.000

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full		Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
Ex-Wetland	0.845	11	64	0	7.052	90	17322 21:05	0.414
J3	0.010	1	0	0	2.000	100	9386 10:47	8.235
UpCulv	0.008	0	0	0	2.000	100	1647 19:04	5.812

Outfall Loading Summary **********

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr

0F-3	7.44	0.083	5.812	1535.975
OF-W	8.59	0.008	0.413	132.936
System	8.02	0.092	0.413	1668.911

Link Flow Summary

Link	Туре	Maximum Flow CMS	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
1 C1 C2_1 C2_2 ExCulvert	CONDUIT CHANNEL CHANNEL CHANNEL CONDUIT	0.413 4.120 6.297 8.235 5.812	17322 21:0 17322 19:0 17322 18:5 17322 18:5 17322 18:5 17322 19:04	0.96 3 1.69 3 1.62	1.32 0.39 0.62 1.01 8.21	0.97 1.00 1.00 1.00 1.00

 Adjusted /Actual
 ------ Fraction of Time in Flow Class

 Conduit
 Length
 Up Dry
 Down Dry
 Sub Crit
 Sup Crit
 Up Crit
 Down Crit
 Norm Crit
 Inlet

 1
 1.00
 0.89
 0.00
 0.00
 0.01
 0.11
 0.00
 0.00
 0.00

 21
 1.00
 0.94
 0.01
 0.00
 0.44
 0.00
 0.00
 0.00
 1.00
 0.00

 C2_1
 1.00
 0.83
 0.12
 0.00
 0.17
 0.00
 0.00
 0.99
 0.00

 C2_2
 1.00
 0.01
 0.82
 0.00
 0.17
 0.00
 0.00
 0.00
 0.00
 0.00

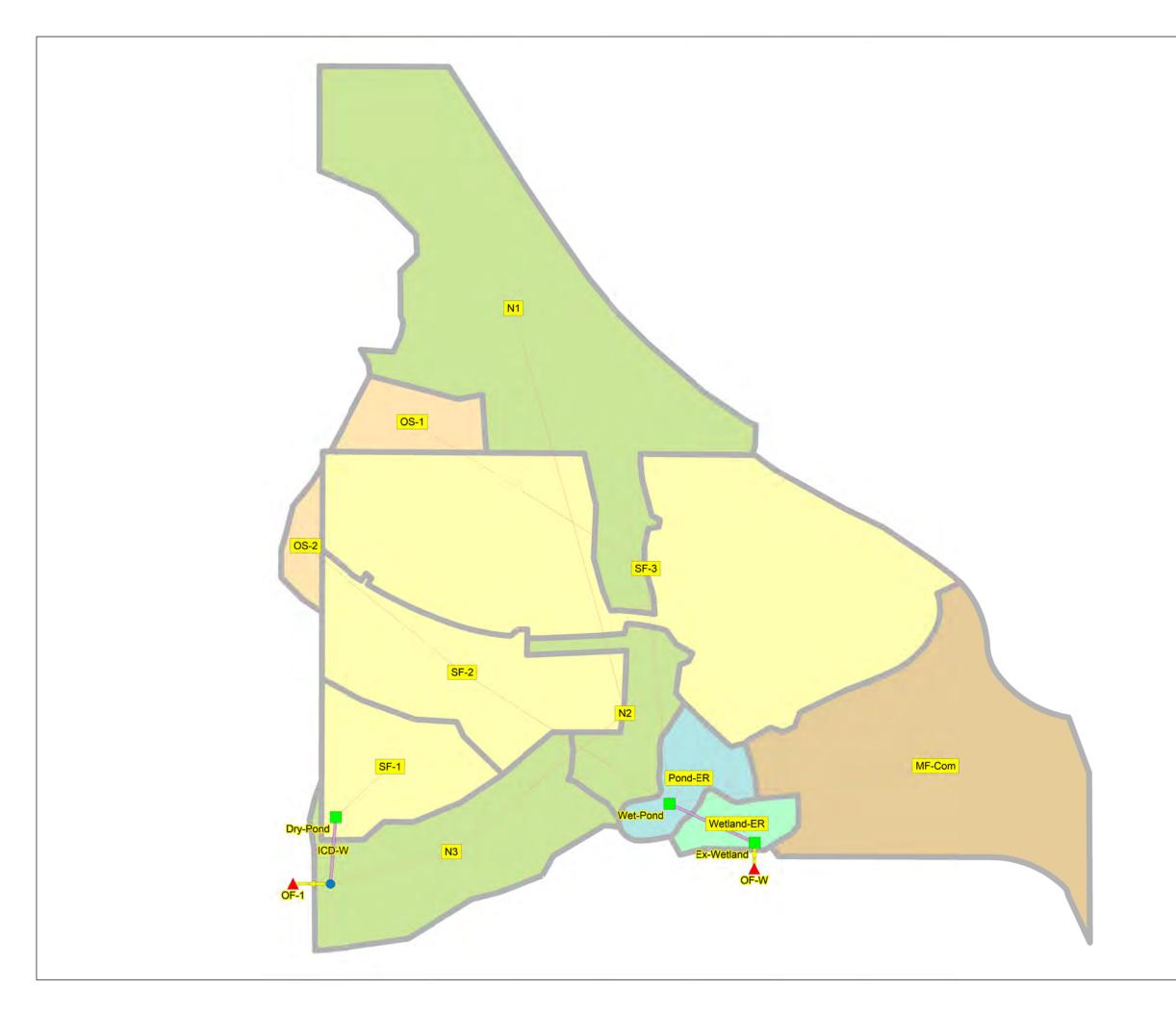
 Exculvert
 1.00
 0.01
 0.00
 0.91
 0.08
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00</

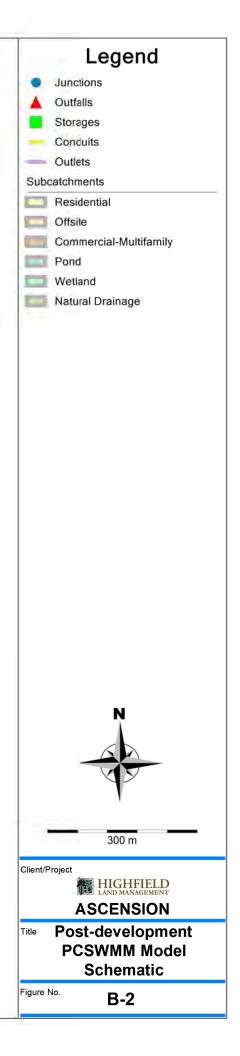
Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
1 C1 C2_1 C2_2 ExCulvert	0.01 2.13 2.59 8.85 0.01	3.92 2.13 2.59 8.93 99.79	0.01 3.05 8.93 25.40 0.01	4.76 0.01 0.01 0.01 113.51	0.01 0.01 0.01 0.01 0.01 0.01

Analysis begun on: Tue Aug 25 11:18:31 2020 Analysis ended on: Tue Aug 25 11:20:11 2020 Total elapsed time: 00:01:40

APPENDIX C

PCSWMM Post-development Analysis


- Input Parameters
 - Schematic
- Input and Report Files


LGN Consulting Engineering Ltd.

Catchment ID	Area (ha)	lmp (%)	lmp. (ha)	Imp. Directly Connected (%)	Imp. Directly Connected (ha)	Imp. Routed to Perv. (%)	Imp. Routed through Perv. (ha)
MF-Com	25.52	81.6	20.82	70	14.58	30	6.25
N1*	37.79	3.7	1.40	0	0.00	100	1.40
N2*	5.79	0	0.00	0	0.00	100	0.00
N3*	13.7	0	0.00	0	0.00	100	0.00
OS-1	3.78	6	0.23	0	0.00	100	0.23
OS-2	1.74	9	0.16	0	0.00	100	0.16
Pond-ER	3.89	41	1.59	100	1.59	0	0.00
SF-1	7.77	34.9	2.71	52	1.41	48	1.30
SF-2	13.99	50.4	7.05	51	3.60	49	3.45
SF-3	45.66	46.3	21.14	53	11.20	47	9.94
Wetland-ER	2.47	49.1	1.21	93	1.13	7	0.08
	162.1	34.7	56.32	59.5	33.51	40.5	22.81

Catchment Parameters Used in the PCSWMM Model

* Exiting Areas (Natural Drainage Course)

Single Storm Event

- Input File - Report File

To reduce the amount of data in the input file, the following sections have been excluded in this Appendix: Coordinates Vertices Polygons [TITLE] Ascension Post-Development 400 mm Sandy Loam Single Event Calgary 24h-100y [OPTIONS] ;;Options Value -----FLOW UNITS CMS INFILTRATION GREEN_AMPT FLOW ROUTING DYNWAVE LINK OFFSETS DEPTH MIN SLOPE 0 ALLOW_PONDING SKIP_STEADY_STATE START_DATE NO NO 08/22/2020 START_TIME 00:00:00 REPORT_START_DATE 08/22/2020 REPORT_START_TIME 00:00:00 END_DATE 08/25/2020 ENDTIME 00:00:00 SWEEP START 01/01 SWEEP END 12/31 DRY DAYS 0 REPORT_STEP 00:05:00 00:05:00 WET_STEP DRY STEP 00:30:00 ROUTING_STEP RULE_STEP 00:00:00 INERTIAL_DAMPING PARTIAL NORMAL FLOW LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT FLOW TOL 5 MINIMUM STEP 0.5 THREADS 4 [EVAPORATION] Parameters ;;Type ;;----------CONSTANT 0 DRY_ONLY NO [RAINGAGES] Rain Time Snow Data ;; ;;Name Intrvl Catch Source Type ------ ----------Calgary_24h_100y INTENSITY 0:05 1.0 TIMESERIES Calgary_24h_100y [SUBCATCHMENTS] Total Pcnt. Pcnt. Curb Snow ;; ;;Name Raingage Outlet Imperv Width Slope Area Length Pack ;;------ -;Commercial-MF Com-MF Calgary_24h_100y Wet-Pond 26,0265 100 2082.12 2 0 ;Natural Drainage Course Calgary_24h_100y J1 37.7858 3.7 917.131 5 Ø Fx-1 ;Natural Drainage Course Calgary_24h_100y OF-1 Fx-2 5.7895 8 578.95 3 0 ;Natural Drainage Course Ex-3 Calgary_24h_100y J3 13.52 2 1352 8 0 ;Offsite Areas 0S-1 Calgary_24h_100y OS-2 3.7839 6 378.39 5 0 ;Offsite Areas

1.7365 9

347.3

5

0

Calgary_24h_100y SF-2

0S-2

;Pond Area

Pond-ER ;Residential	Calgary_24	h_100y Wet	-Pond	3.8906	41.7	972.65	2	0	
SF-1	Calgary_24	h_100y Dry	/-Pond	8.4971	100	679.76	8 3	0	
;Residential	Col	h 100. Und	David	12 2461	100	1067 6	00.7	0	
SF-2 ;Residential	Calgary_24	n_1009 Wei	-Pond	13.3461	100	1067.6	88 3	0	
SF-3	Calgary_24	h_100y Wet	-Pond	45.7774	100	3662.1	92 5	0	
;Wetland Area	Colgony 24	h 100 - Fr	Watland	2 4722	40.7	206 10	റ	0	
Wetland-ER	Calgary_24	n_100y Ex-	wetland	2.4733	49.7	206.10	8 2	0	
[SUBAREAS]									
;;Subcatchment 	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	Rou	teTo P	ctRouted	
;; Com-MF	0.015	0.25	1.6	3.2	0	PER	VIOUS 2	.9	
Ex-1	0.014	0.3	2	7.5	0			00	
Ex-2 Ex-3	0.014 0.014	0.3 0.3	2 2	7.5 7.5	0 0			.00 .00	
0S-1	0.014	0.3	2	7.5	0			.00	
0S-2	0.014	0.3	2	7.5	0			.00	
Pond-ER	0.015	0.25	1.6	3.2	0			4	
SF-1 SF-2	0.015 0.015	0.25 0.25	1.6 1.6	3.2 3.2	0 0			4 ·8	
SF-3	0.015	0.25	1.6	3.2	0			.7	
Wetland-ER	0.015	0.25	1.6	3.2	0	PER	VIOUS 8		
[INFILTRATION]									
;;Subcatchment	Suction	HydCon	IMDmax						
;; Com ME	110	14 15	0.246						
Com-MF Ex-1	110 110	14.15 14.15	0.246 0.246						
Ex-2	110	14.15	0.246						
Ex-3	110	14.15	0.246						
0S-1 0S-2	110 110	14.15 14.15	0.246 0.246						
Pond-ER	110	14.15	0.246						
SF-1	110	14.15	0.246						
SF-2 SF-3	110 110	14.15 14.15	0.246 0.246						
Wetland-ER	110	14.15	0.246						
[LID_CONTROLS] ;;	Type/Layer	Parameter	~ 5						
;;									
SandyLoam	BC	_				-			
SandyLoam SandyLoam	SURFACE SOIL	5 400	0.2 0.396	0.41 0.175	2 0.081	5 27.	08 7		110
SandyLoam	STORAGE	0.0001	0.75	0.5	0				
SandyLoam	DRAIN	0	0.5	6	6	0	0		
[LID_USAGE]									
;;Subcatchment	LID Proces	s Nur	nber Area	Width	InitS	Satur	FromImprv	ToPerv	Report File
Drain to ;;	FromPerv								
,,									
Com-MF	SandyLoam	4	44639	0	0				
		1	11055	v	0		29	0	*
*	0								*
		1	48806	0	0		29 44	0 0	*
* SF-1 * SF-2	0 SandyLoam 0 SandyLoam								* *
* SF-1 * SF-2 *	0 SandyLoam 0 SandyLoam 0	1	48806 59639	0 0	0 0		44 48	0 0	* * *
* SF-1 * SF-2	0 SandyLoam 0 SandyLoam	1	48806	0	0		44	0	* * *
* SF-1 * SF-2 * SF-3 *	0 SandyLoam 0 SandyLoam 0 SandyLoam	1	48806 59639	0 0	0 0		44 48	0 0	* * *
* SF-1 * SF-2 * SF-3 *	0 SandyLoam 0 SandyLoam 0 SandyLoam 0	1 1 1	48806 59639 213860	0 0 0	0 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * SF-3 *	0 SandyLoam 0 SandyLoam 0 SandyLoam	1	48806 59639	0 0	0 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * SF-3 * [JUNCTIONS] ;; ;;Name ;;	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev.	1 1 1 Max. Depth	48806 59639 213860 Init. Depth	0 0 0 Surcharge Depth	0 0 Ponded Area		44 48	0 0	* * *
* SF-1 * SF-2 * [JUNCTIONS] ;; ;;Name ;;	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5	1 1 1 Max. Depth	48806 59639 213860 Init. Depth 0	0 0 0 Surcharge Depth 0	0 0 0 Ponded Area 0		44 48	0 0	* * *
* SF-1 * SF-2 * [JUNCTIONS] ;; ;;Name ;;	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev.	1 1 1 Max. Depth 0 0 5.327	48806 59639 213860 Init. Depth	0 0 0 Surcharge Depth 0 0 0	0 0 Ponded Area 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * [JUNCTIONS] ;; ;;Name ;; J1 J2 J3 OF-1	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5 1202.5 1166.5 1192	1 1 1 Max. Depth 0 5.327 1.69	48806 59639 213860 Init. Depth 0 0 0 0	0 0 0 Surcharge Depth 0 0 0	0 0 Ponded Area 0 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * [JUNCTIONS] ;; ;;Name ;;	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5 1202.5 1166.5	1 1 1 Max. Depth 0 0 5.327	48806 59639 213860 Init. Depth 0 0 0	0 0 0 Surcharge Depth 0 0 0	0 0 Ponded Area 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * [JUNCTIONS] ;; ;Name ;;	0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5 1202.5 1166.5 1192 1155.74	1 1 1 Max. Depth 0 5.327 1.69 3	48806 59639 213860 Init. Depth 0 0 0 0 0 0	0 0 Surcharge Depth 0 0 0 0	0 0 Ponded Area 0 0 0 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * SF-3 * [JUNCTIONS] ;; ;;Name ;;	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5 1202.5 1166.5 1192 1155.74 Invert	1 1 1 Max. Depth 0 5.327 1.69 3 Outfall	48806 59639 213860 Init. Depth 0 0 0 0 0 Stage/Ta	0 0 0 Surcharge Depth 0 0 0 0 0	0 0 Ponded Area 0 0 0 0 0 0		44 48	0 0	* * *
* SF-1 * SF-2 * SF-3 * [JUNCTIONS] ;; ;;Name ;; J1 J2 J3 OF-1 OF-2 [OUTFALLS] ;; ;;Name	0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5 1202.5 1166.5 1192 1155.74	1 1 1 Max. Depth 0 5.327 1.69 3	48806 59639 213860 Init. Depth 0 0 0 0 0 0	0 0 0 Surcharge Depth 0 0 0 0 0	0 0 Ponded Area 0 0 0 0 0		44 48	0 0	* * * *
* SF-1 * SF-2 * SF-3 * [JUNCTIONS] ;; ;;Name ;;	0 SandyLoam 0 SandyLoam 0 SandyLoam 0 Invert Elev. 1205.5 1202.5 1166.5 1192 1155.74 Invert	1 1 1 Max. Depth 0 5.327 1.69 3 Outfall	48806 59639 213860 Init. Depth 0 0 0 0 0 Stage/Ta	0 0 0 Surcharge Depth 0 0 0 0 0	0 0 Ponded Area 0 0 0 0 0 0 0 0 0 0		44 48	0 0	* * *

PCSWMM Input File

• Namo		Max. Depth		Storage Curve	Curve Params					Evaj Fra		Tnfil+	ration parame
;;Name ;;													
)ry-Pond		1.5		TABULAR	Dry-Pond			0		0			
Ex-Wetland Net-Pond		1.5 5.5		TABULAR TABULAR	Wetland Wet-Pond			0 0		0 0			
let-Polia	1192.5	5.5	5.5	TADULAN	wet-Pollu			U		U			
[CONDUITS]	Talat		0+1.o+		M	anning	Talat)+1.c+		T		Max
;; ;Name	Inlet Node		Outlet Node	Ler	ngth N	anning	Inlet Offset		Dutlet Dffset		Init. Flow		Max. Flow
;													
Culvert	F		05.11	10	<i>c</i> 0	045	0.0		_		•		•
Culvert	Ex-Wetlan	a	OF-W	18.	.6 0	.015	0.3	6	9		0		0
	J1		J2	67.	.687 0	.017	0	(9		0		0
Natural Channel													•
Natural Channel	J2		0F-1	291	1.26 0	.01	0	(9		0		0
2_1	0F-1		J3	498	8.745 0	.01	0	(9		0		0
Natural Channel													
2_2	33		0F-2	305	5.17 0	.01	0	(9		0		0
Culvert xCulvert	0F-2		0F-3	77	.33 0	.017	0	(9		0		0
OUTLETS]	Tolot		0+1++	•	+flor o	+1c+		Decel	c /				Elan
; ;Name	Inlet Node		Outlet Node			utlet ype		Qcoef† QTabl∉			Qexp	on	Flap Gate
;													
CD-E	Wet-Pond		0F-1	3.5		ABULAR/HEA		R156.0	5				NO
CD-W	Dry-Pond		0F-2	0	17	ABULAR/HEA	AD	R28.8					NO
XSECTIONS]													
;Link	Shape	Geor	n1	Geom2	Geom3	Geon	n4	Barre	els				
;	CIRCULAR	0.4	 5	 0	 0	 0		1					
	CIRCULAR	0.6		0	0	0		1					
	IRREGULAR	Sec	tion18	0	0	0		1					
2_1	IRREGULAR		tion18	0	0	0		1					
2_2 xCulvert	IRREGULAR CIRCULAR	0.6	tion6 3	0 0	0 0	0 0		1 1					
TRANSECTS]													
IC 0.35 0.35	0.07												
1 Section18	8	72.8			0.0	0.0	0.0		0.0				
				22 72.899	9 1187.7	5 73.041	1187	.74	73.839				
		17 75	51/ 1189	37 79 32/	1								
GR 1189.24 65.50 GR 1188.19 74.3		47 75.	614 1189.	37 79.324	4								
ir 1188.19 74.3 ic 0.35 0.35	12 1188. 0.07												
R 1188.19 74.3 C 0.35 0.35 1 Section6	12 1188. 0.07 8	83.1	11 83.945	0.0	0.0	0.0	0.0		0.0				
R 1188.19 74.3 C 0.35 0.35 C Section6 R 1177.03 80.0	12 1188. 0.07 8 13 1176.		11 83.945 881 1176.	0.0 24 83.111	0.0 1 1175.8	0.0 83.269	0.0 1175		0.0 33.745				
R 1188.19 74.3: IC 0.35 0.35 (1 Section6 IR 1177.03 80.0) IR 1176.26 83.94	12 1188. 0.07 8 13 1176.	83.1 29 81.3	11 83.945 881 1176.	0.0 24 83.111	0.0 1 1175.8								
R 1188.19 74.3 C 0.35 0.35 (1 Section6 R 1177.03 80.0 R 1176.26 83.94 (LOSSES]	12 1188. 0.07 8 13 1176. 45 1176.	83.1 29 81.3 47 85.4	11 83.945 881 1176. 422 1177.	0.0 24 83.111 79 86.958	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: IC 0.35 0.35 (1 Section6 IR 1177.03 80.0) IR 1176.26 83.94	12 1188. 0.07 8 13 1176.	83.1 29 81.3	11 83.945 881 1176. 422 1177.	0.0 24 83.111 79 86.958	0.0 1 1175.8	83.269							
R 1188.19 74.3: IC 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ;	12 1188. 0.07 8 13 1176. 45 1176.	83.1 29 81.3 47 85.4	11 83.945 881 1176. 422 1177.	0.0 24 83.111 79 86.958	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: 10 0.35 0.35 11 Section6 18 1177.03 80.02 18 1176.26 83.94 LOSSES] ;Link ; CURVES]	12 1188. 0.07 8 13 1176. 45 1176. Inlet	83.1 29 81.3 47 85.4 Outle	11 83.945 881 1176. 422 1177. t Avera	0.0 24 83.111 79 86.958 ge Flag	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 1 Section6 R 1177.03 80.0 R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name	12 1188. 0.07 8 13 1176. 45 1176.	83.1 29 81.3 47 85.4	11 83.945 881 1176. 422 1177. t Avera	0.0 24 83.111 79 86.958 ge Flag	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet	83.1 29 81.3 47 85.4 Outle X-Valu 0	11 83.945 881 1176. 422 1177. t Avera ue Y-Val 0	0.0 24 83.111 79 86.958 ge Flag 	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle X-Vali - 0 0.093	11 83.945 881 1176. 422 1177. t Avera ue Y-Val 0 0.062	0.0 24 83.111 79 86.958 ge Flag 	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 I Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1 29 81.3 47 85.4 Outle X-Valu 0	11 83.945 881 1176. 422 1177. t Avera ue Y-Val 0.062 0.12	0.0 24 83.111 79 86.958 ge Flag ue 6	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6 156.6 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.593 0.843	11 83.945 881 1176. 422 1177. t Avera 0 0.062 0.12 0.157 0.188	0.0 24 83.111 79 86.958 ge Flag 4 6 8 1	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6 156.6 156.6 156.6 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.593 0.843 1.093	11 83.945 881 1176. 422 1177. t Avera 0 0.062 0.12 0.157 0.188 0.214	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.593 0.843	11 83.945 881 1176. 422 1177. t Avera 	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2 4	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: C 0.35 0.35 I Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ;	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.593 0.843 1.093 1.343	11 83.945 881 1176. 422 1177. t Avera 	0.0 24 83.111 79 86.958 ge Flag ue 6 8 1 2 4 6	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: 1C 0.35 0.35 1 Section6 1R 1177.03 80.02 R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.593 0.843 1.093 1.343 1.593	11 83.945 881 1176. 422 1177. t Avera 	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2 4 6 1	0.0 1 1175.8 8	83.269							
IR 1188.19 74.3: IC 0.35 0.35 IS Section6 IR 1177.03 80.02 IR 1177.03 80.02 IR 1177.03 80.02 IR 1176.26 83.94 CUSSES] ;Link	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type Rating	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.843 1.093 1.343 1.593 1.843 2.143	11 83.945 881 1176. 422 1177. t Avera ue Y-Val 0 0.062 0.12 0.157 0.188 0.214 0.258 4 0.278 0.299	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2 4 6 1	0.0 1 1175.8 8	83.269							
R 1188.19 74.3: IC 0.35 0.35 1 Section6 R 1177.03 80.0: R 1176.26 83.94 LOSSES] ;Link ; CURVES] ;Name ; 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 156.6 28.8	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.593 0.843 1.093 1.593 1.843 1.843	11 83.945 881 1176. 422 1177. t Avera 	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2 4 6 1 9	0.0 1 1175.8 8	83.269							
IR 1188.19 74.3: IC 0.35 0.35 11 Section6 IR IR 1177.03 80.02 IR 1177.03 80.02 IR 1176.26 83.94 LOSSES] ;Link	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type Rating	83.1: 29 81.3 47 85.4 Outle 0 0.093 0.343 0.593 0.843 1.093 1.593 1.843 2.143 0 0.221 0.471	11 83.945 881 1176. 422 1177. t Avera 	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2 4 6 1 9 3 8	0.0 1 1175.8 8	83.269							
R 1188.19 74.3 C 0.35 0.35 (1 Section6 R 1177.03 80.0 R 1176.26 83.94 (LOSSES] ;Link	12 1188. 0.07 8 13 1176. 45 1176. Inlet Type Rating	83.1: 29 81.3 47 85.4 Outlee 0 0.093 0.343 0.593 0.843 1.093 1.343 1.593 1.843 2.143 0 0.221	11 83.945 881 1176. 422 1177. t Avera 	0.0 24 83.111 79 86.958 ge Flag 6 8 1 2 4 6 1 9 3 8 9	0.0 1 1175.8 8	83.269							

R28.8		1.4712	0.0084
R28.8		1.771	0.0092
Dry-Pond	Storage	0	1052.764
Dry-Pond	0	0.25	1174.707
Dry-Pond		0.5	1301.147
Dry-Pond		0.75	1432.084
Dry-Pond		1	1567.517
Dry-Pond		1.25	1707.447
Dry-Pond		1.5	1868.381
Wetland	Storage	0	1018
Wetland		0.25	7072
Wetland		0.5	8482
Wetland		0.75	9674
Wetland		1	11306
Wet-Pond	Storage	0	1265.308
Wet-Pond		0.25	1576.948
Wet-Pond		0.5	1897.202
Wet-Pond		0.75	2226.072
Wet-Pond		1	3555.796
Wet-Pond		1.25	5008.793
Wet-Pond		1.5	5728.093
Wet-Pond		1.75	6475.087
Wet-Pond		2	7249.775
Wet-Pond		2.25	8052.157
Wet-Pond		2.5	8882.233
Wet-Pond		2.75	9740.003
Wet-Pond		3	11112.413
Wet-Pond		3.25	13375.288
Wet-Pond		3.5	15788.106
Wet-Pond		3.75	17662.38
Wet-Pond		4	18721.113
Wet-Pond		4.25	19649.843
Wet-Pond		4.5 4.75	20588.121
Wet-Pond Wet-Pond		4.75 5	21535.948 22493.323
Wet-Pond		5.25	23460.247
		5.5	24432.341
Wet-Pond		5.5	24492:941
[TIMESERIES] ;;Name	Date	Time	Value
[TIMESERIES] ;;Name ;; ;Calgary_24h_100		Time orm, rain i	Value interval = 5 minutes, rain units = mm/hr.
[TIMESERIES] ;;Name ;; ;Calgary_24h_100 Calgary_24h_100y		Time orm, rain i 0:00	Value Interval = 5 minutes, rain units = mm/hr. 0
[TIMESERIES] ;;Name ;; ;Calgary_24h_100 Calgary_24h_100y Calgary_24h_100y	y design st	Time 	Value interval = 5 minutes, rain units = mm/hr. 0 1.094
[TIMESERIES] ;;Name ;; ;Calgary_24h_100 Calgary_24h_100y Calgary_24h_100y	y design st	Time orm, rain i 0:00	Value Interval = 5 minutes, rain units = mm/hr. 0
[TIMESERIES] ;;Name ;; ;Calgary_24h_100 Calgary_24h_100y Calgary_24h_100y	y design st	Time 	Value interval = 5 minutes, rain units = mm/hr. 0 1.094
[TIMESERIES] ;;Name ;; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y	y design st	Time orm, rain i 0:00 0:05 0:10	Value Interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103
[TIMESERIES] ;;Name ;;	y design st	Time orm, rain i 0:00 0:05 0:10 23:50	Value Interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103
[TIMESERIES] ;;Name ;; ;Calgary_24h_100; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;; ;Calgary_24h_100; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y	y design st	Time orm, rain i 0:00 0:05 0:10 23:50	Value Interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103
[TIMESERIES] ;;Name ;;	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;;	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;;	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;Calgary_24h_100; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS AL	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;; ;Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;Calgary_24h_100; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS AL	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;; ;Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS]	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081
[TIMESERIES] ;;Name ;;	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077
[TIMESERIES] ;;Name ;;Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS] [MAP]	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077
[TIMESERIES] ;;Name ;; ;Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS	y design st	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077
[TIMESERIES] ;;Name ;:Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS UNITS [COORDINATES] ;Node	y design st -19800.554 Meters X-Coord	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 pord
[TIMESERIES] ;;Name ;; ;Calgary_24h_100y Calgary_2	y design st -19800.554 Meters X-Coord	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 pord
[TIMESERIES] ;;Name ;:Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS UNITS [COORDINATES] ;Node	y design st -19800.554 Meters X-Coord	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 pord
<pre>[TIMESERIES] ;;Name ;;Calgary_24h_100y Calgary_24h_100y Calgary_24h_1</pre>	y design st -19800.554 Meters X-Coord	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00 5345242 566 Y-Cc Y-Cc	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 bord
<pre>[TIMESERIES] ;;Name ;;Calgary_24h_100y Calgary_24h_100y Calgary_24h_1</pre>	y design st -19800.554 Meters X-Coord	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00 5345242 566 Y-Cc Y-Cc	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 bord
<pre>[TIMESERIES] ;;Name ;;Calgary_24h_100; Calgary_24h_100y Calgary_24h_1</pre>	y design st -19800.554 Meters X-Coord X-Coord	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00 5345242 566 Y-Cc Y-Cc	Value interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 bord
<pre>[TIMESERIES] ;;Name ;; ;Calgary_24h_100; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS UNITS [COORDINATES] ;;Node ;; [VERTICES] ;;Link ;; [POLYGONS] ;;Subcatchment</pre>	- 19800.554 Meters X-Coord 	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00 5345242 566 Y-Cc Y-Cc Y-Cc	Value Value Value Value 1.02 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.4760 bord
<pre>[TIMESERIES] ;;Name ;; ;Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS UNITS [COORDINATES] ;;Node ;; [VERTICES] ;;Link ;; [POLYGONS] ;;Subcatchment ;;</pre>	- 19800.554 Meters X-Coord 	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00 5345242 566 Y-Cc Y-Cc Y-Cc	Value
<pre>[TIMESERIES] ;;Name ;; ;Calgary_24h_100; Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y Calgary_24h_100y [REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS UNITS [COORDINATES] ;;Node ;; [VERTICES] ;;Link ;; [POLYGONS] ;;Subcatchment</pre>	- 19800.554 Meters X-Coord 	Time orm, rain i 0:00 0:05 0:10 23:50 23:55 24:00 5345242 566 Y-Cc Y-Cc Y-Cc	Value Interval = 5 minutes, rain units = mm/hr. 0 1.094 1.103 1.085 1.081 1.077 56764.72393014 -17906.5841223704 5668793.47609 bord

LGN Consulting Engineering Ltd.

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Ascension Post-Development 400 mm Sandy Loam Single Event

Raingage Summary

Name	Data Source	Data Type	Recording Interval
Calgary_24h_100y	Calgary_24h_100y	INTENSITY	5 min.

Subcatchment Summary

•••••••••

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
Com-MF	26.03	2082.12	100.00	2.0000 Calgary_24h_100y	Wet-Pond
Ex-1	37.79	917.13	3.70	5.0000 Calgary_24h_100y	J1
Ex-2	5.79	578.95	8.00	3.0000 Calgary_24h_100y	0F-1
Ex-3	13.52	1352.00	2.00	8.0000 Calgary_24h_100y	33
0S-1	3.78	378.39	6.00	5.0000 Calgary_24h_100y	0S-2
0S-2	1.74	347.30	9.00	5.0000 Calgary_24h_100y	SF-2
Pond-ER	3.89	972.65	41.70	2.0000 Calgary_24h_100y	Wet-Pond
SF-1	8.50	679.77	100.00	3.0000 Calgary_24h_100y	Dry-Pond
SF-2	13.35	1067.69	100.00	3.0000 Calgary_24h_100y	Wet-Pond
SF-3	45.78	3662.19	100.00	5.0000 Calgary_24h_100y	Wet-Pond
Wetland-ER	2.47	206.11	49.70	2.0000 Calgary_24h_100y	Ex-Wetland

LID Control Summary *******

Subcatchment	LID Control	No. of Units	Unit Area	Unit Width	% Area Covered	% Imperv Treated	% Perv Treated
Com-MF	SandyLoam	1	44639.00	0.00	17.15	29.00	0.00
SF-1	SandyLoam	1	48806.00	0.00	57.44	44.00	0.00
SF-2	SandyLoam	1	59639.00	0.00	44.69	48.00	0.00
SF-3	SandyLoam	1	213860.00	0.00	46.72	47.00	0.00

************ Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
J1	JUNCTION	1205.50	0.60	0.0	
J2	JUNCTION	1202.50	1.63	0.0	
J3	JUNCTION	1166.50	5.33	0.0	
OF-1	JUNCTION	1192.00	1.69	0.0	
0F-2	JUNCTION	1155.74	3.00	0.0	
OF - 3	OUTFALL	1153.47	0.63	0.0	
OF-W	OUTFALL	1197.00	0.45	0.0	
Dry-Pond	STORAGE	1170.00	1.50	0.0	
Ex-Wetland	STORAGE	1197.50	1.50	0.0	
Wet-Pond	STORAGE	1192.50	5.50	0.0	

Link Summary

Name	From Node	To Node	Туре	Length	%Slope R	oughness
1	Ex-Wetland	OF-W	CONDUIT	18.6	4.3051	0.0150
2	J1	J2	CONDUIT	67.7	4.4365	0.0170
3	J2	0F-1	CONDUIT	291.3	3.6074	0.0700
C2 1	0F-1	J3	CONDUIT	498.7	5.1195	0.0700
C2_2	J3	0F-2	CONDUIT	305.2	3.5281	0.0700
ExCulvert	0F-2	0F-3	CONDUIT	77.3	2.9367	0.0170
ICD-E	Wet-Pond	0F-1	OUTLET			
ICD-W	Dry-Pond	0F-2	OUTLET			

Cross Section Summary *****

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
1	CIRCULAR	0.45	0.16	0.11	0.45	1	0.51
2	CIRCULAR	0.60	0.28	0.15	0.60	1	0.99
3	Section18	1.63	10.77	0.20	13.82	1	9.87
C2_1	Section18	1.63	10.77	0.20	13.82	1	11.76
C2_2	Section6	1.99	8.68	0.21	6.94	1	8.15
ExCulvert	CIRCULAR	0.63	0.31	0.16	0.63	1	0.92

***** Transect Summary *****

Transect Se	ction18				
Area:					
	0.0021	0.0047	0.0075	0.0103	0.0133
	0.0165	0.0198	0.0232	0.0267	0.0304
	0.0342	0.0381	0.0422	0.0464	0.0511
	0.0572	0.0652	0.0751	0.0868	0.1004
	0.1159	0.1332	0.1520	0.1717	0.1923
	0.2139	0.2363	0.2597	0.2840	0.3091
	0.3352	0.3622	0.3901	0.4190	0.4487
	0.4793	0.5109	0.5434	0.5767	0.6110
	0.6462	0.6823	0.7194	0.7573	0.7961
	0.8359	0.8763	0.9171	0.9584	1.0000
Hrad:					
	0.1322	0.2706	0.3943	0.5064	0.6094
	0.7050	0.7944	0.8788	0.9590	1.0356
	1.1091	1.1800	1.2485	1.3210	1.4092
	1.4583	1.4527	1.4120	1.3526	1.2861
	1.2195	1.1566	1.1062	1.0681	1.0387
	1.0157	0.9977	0.9835	0.9724	0.9637
	0.9570	0.9520	0.9483	0.9458	0.9443
	0.9436	0.9437	0.9444	0.9456	0.9473
	0.9495	0.9520	0.9548	0.9580	0.9614
	0.9651	0.9731	0.9817	0.9907	1.0000
Width:					
	0.0607	0.0639	0.0671	0.0703	0.0735
	0.0767	0.0799	0.0831	0.0863	0.0895
	0.0927	0.0959	0.0990	0.1039	0.1246
	0.1692	0.2137	0.2582	0.3027	0.3472
	0.3917	0.4362	0.4603	0.4820	0.5038
	0.5256	0.5474	0.5691	0.5909	0.6127
	0.6344	0.6562	0.6780	0.6997	0.7215
	0.7433	0.7650	0.7868	0.8086	0.8303
	0.8521	0.8739	0.8956	0.9174	0.9392
	0.9609	0.9708	0.9805	0.9903	1.0000
Transect Se	ction6				
Area:					
	0.0023	0.0047	0.0072	0.0099	0.0127
	0.0157	0.0188	0.0221	0.0255	0.0291
	0.0328	0.0387	0.0493	0.0618	0.0760
	0.0920	0.1097	0.1285	0.1479	0.1680
	0.1888	0.2102	0.2323	0.2551	0.2786
	0.3027	0.3276	0.3530	0.3792	0.4060
	0.4335	0.4614	0.4896	0.5179	0.5464
	0.5752	0.6041	0.6333	0.6627	0.6923
	0.7221	0.7522	0.7824	0.8128	0.8435
	0.8744	0.9055	0.9368	0.9683	1.0000

LGN Consulting Engineering Ltd.

11					
Hrad:	0 4 6 7 7	0.0004	0 4404	0 5047	0 5070
	0.1677	0.3004	0.4104	0.5047	0.5878
	0.6627	0.7312	0.7949	0.8546	0.9113
	0.9653	0.9750	0.8867	0.8151	0.7601
	0.7176	0.6850	0.6662	0.6567	0.6532
	0.6536	0.6568	0.6620	0.6685	0.6760
	0.6843	0.6931	0.7023	0.7118	0.7215
	0.7317	0.7449	0.7585	0.7725	0.7866
	0.8010	0.8154	0.8299	0.8444	0.8588
	0.8733	0.8877	0.9021	0.9163	0.9305
	0.9446	0.9586	0.9725	0.9863	1.0000
Width:					
	0.0731	0.0776	0.0822	0.0867	0.0913
	0.0958	0.1004	0.1049	0.1095	0.1140
	0.1186	0.2711	0.3653	0.4201	0.4748
	0.5296	0.5788	0.5999	0.6211	0.6422
	0.6633	0.6845	0.7056	0.7267	0.7479
	0.7690	0.7901	0.8113	0.8324	0.8535
	0.8733	0.8800	0.8866	0.8933	0.9000
	0.9066	0.9133	0.9200	0.9266	0.9333
	0.9400	0.9467	0.9533	0.9600	0.9667
	0.9733	0.9800	0.9867	0.9933	1.0000

Analysis Options ********	
Flow Units	CMS
Process Models:	
Rainfall/Runoff	YES
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	NO
Water Quality	NO
Infiltration Method	GREEN_AMPT
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	08/22/2020 00:00:00
Ending Date	08/25/2020 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:05:00
Wet Time Step	00:05:00
Dry Time Step	00:30:00
Routing Time Step	
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.001500 m
*****	Volume
Runoff Quantity Continuity	hectare-m
ale	

Initial LID Storage	1.189	7.311
Total Precipitation	14.582	89.667
Evaporation Loss	0.000	0.000
Infiltration Loss	6.719	41.313
Surface Runoff	4.490	27.606
Final Storage	4.604	28.309
Continuity Error (%)	-0.258	
*****	Volume	Volume
Flow Routing Continuity	Volume hectare-m	Volume 10^6 ltr
Flow Routing Continuity	hectare-m	10^6 ltr
Flow Routing Continuity ************************************	hectare-m 0.000	10^6 ltr 0.000
Flow Routing Continuity ************************************	hectare-m 0.000 4.490	10^6 ltr 0.000 44.896
Flow Routing Continuity ************************************	hectare-m 0.000	10^6 ltr 0.000
Flow Routing Continuity ************************************	hectare-m 0.000 4.490	10^6 ltr 0.000 44.896
Flow Routing Continuity ************************************	hectare-m 0.000 4.490 0.000	10^6 ltr 0.000 44.896 0.000

Depth mm

Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)	Ø. Ø. 2. 2.	000 000 000 472 609 003	0.000 0.000 0.000 24.721 26.090

**************************************	dexes		
**************************************	: 5.0 : 5.0 : 0.0	0	

***** Subcatchment Runoff Summary ***********

	Total	Total	Total	Total	Imperv	Perv	Total	Total	Peak
unoff	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	Runoff
Coeff	Treeip	Runon	LVUP	10011	Runorri	Ranori	Kullorr	Runorr	Runori
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr	CMS
Com-MF	89.67	0.00	0.00	5.57	73.42	0.00	64.98	16.91	9.99
.725	89.07	0.00	0.00	5.57	75.42	0.00	04.98	10.91	9.99
Ex-1	89.67	0.00	0.00	85.55	3.25	4.10	4.10	1.55	0.44
.046									
Ex-2	89.67	0.00	0.00	81.70	7.02	7.96	7.96	0.46	0.19
.089									
Ex-3	89.67	0.00	0.00	81.80	1.75	8.06	8.06	1.09	0.53
.090									
0S-1	89.67	0.00	0.00	79.78	5.26	9.98	9.98	0.38	0.16
0.111	00 (7	21 75	0.00	01 00	0.05	20 60	20 60	0.50	0 10
0S-2 .266	89.67	21.75	0.00	81.98	9.85	29.68	29.68	0.52	0.19
Pond-ER	89.67	0.00	0.00	45.01	36.78	8.75	44.42	1.73	0.99
.495	05.07	0.00	0.00	40.01	50.70	0.75		1.75	0.55
SF-1	89.67	0.00	0.00	18.57	37.66	0.00	27.61	2.35	2.49
.308									
SF-2	89.67	3.86	0.00	14.47	52.84	0.00	35.52	4.74	4.45
.380									
SF-3	89.67	0.00	0.00	15.11	47.15	0.00	32.48	14.87	15.16
.362									
Wetland-ER	89.67	0.00	0.00	40.60	44.02	8.17	48.67	1.20	0.57
2 E12									

0.543

LID Performance Summary *********

Subcatchment	LID Control	Total Inflow mm	Evap Loss mm	Infil Loss mm	Surface Outflow mm	Drain Outflow mm	Initial Storage mm	Final Storage mm	Continuity Error %
Com-MF	SandyLoam	213.82	0.00	32.50	74.89	0.00	32.40	139.04	-0.09
SF-1	SandyLoam	118.52	0.00	32.33	11.35	0.00	32.40	107.30	-0.04

SF-2	SandyLoam	146.42	0.00	32.37	18.01	0.00	32.40	128.58	-0.08
SF-3	SandyLoam	137.10	0.00	32.33	16.03	0.00	32.40	121.19	-0.04

Node Depth Summary

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Max Occurrence days hr:min	Reported Max Depth Meters
J1	JUNCTION	0.00	0.28	1205.78	0 07:30	0.28
J2	JUNCTION	0.01	0.40	1202.90	0 07:35	0.40
33	JUNCTION	0.42	1.02	1167.52	0 07:51	1.02
OF-1	JUNCTION	0.18	0.50	1192.50	0 07:39	0.50
0F-2	JUNCTION	0.17	0.56	1156.30	0 08:04	0.56
OF - 3	OUTFALL	0.17	0.59	1154.06	0 08:05	0.59
OF-W	OUTFALL	0.02	0.09	1197.09	0 08:11	0.09
Dry-Pond	STORAGE	0.94	1.33	1171.33	0 18:45	1.33
Ex-Wetland	STORAGE	0.32	0.39	1197.89	0 08:11	0.39
Wet-Pond	STORAGE	4.14	4.82	1197.32	0 14:41	4.82

_____ MaximumLateralTotalLateralTotalTime of MaxInflowInflowInflowInflowOccurrenceVolumeVolumeCMSCMSdays hr:min10^6 ltr10^6 ltr Flow Balance Error Node Туре Percent -----
 JUNCTION
 0.443
 0.443
 0
 07:30
 1.55
 1.55

 JUNCTION
 0.000
 0.443
 0
 07:30
 0
 1.55

 JUNCTION
 0.600
 0.443
 0
 07:30
 0
 1.55

 JUNCTION
 0.527
 1.206
 0
 07:31
 1.09
 40.8

 JUNCTION
 0.190
 0.826
 0
 07:31
 0.461
 39.7

 JUNCTION
 0.000
 0.996
 0
 07:59
 0
 42.4

 OUTFALL
 0.000
 0.971
 0
 08:05
 0
 42.4

 OUTFAL
 0.000
 0.971
 0
 08:05
 2.35
 2.35

 Ind
 STORAGE
 2.494
 2.494
 0
 J1 -0.023 -0.099]2 J3 0.175 0F - 1 -0.046 0F-2 0.038 0F-3 0.000 OF-W 0.000 Dry-Pond 0.003 Dry-Pond Ex-Wetland 0.000 Wet-Pond 0.000

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full		Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CMS
Dry-Pond	1.241	57	0	0	1.854	86	0 18:45	0.008
Ex-Wetland	1.536	11	0	0	2.029	14	0 08:11	0.041
Wet-Pond	35.161	55	0	0	48.604	75	0 14:41	0.235

Outfall Loading Summary

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr
0F-3	96.91	0.169	0.971	42.377
OF-W	95.90	0.005	0.041	1.148
System	96.40	0.173	0.041	43.525

Link Flow Summary

Link	Туре	Maximum Flow CMS	0ccu	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
1	CONDUIT	0.041	0	08:11	1.94	0.08	0.19
2	CONDUIT	0.443	0	07:30	3.26	0.45	0.57
3	CHANNEL	0.442	0	07:35	0.91	0.04	0.28
C2_1	CHANNEL	0.796	0	07:39	0.74	0.07	0.46
C2 2	CHANNEL	0.989	0	07:59	1.27	0.12	0.39
ExCulvert	CONDUIT	0.971	0	08:05	3.35	1.06	0.91
ICD-E	DUMMY	0.235	0	14:41			
ICD-W	DUMMY	0.008	0	18:45			

	Adjusted			Fract	ion of	 Time	in Flo	 w Clas	 s	
	/Actual	_	Up		Sub	Sup	Up	Down		Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctr1
1	1.00	0.02	0.00	0.00	0.00	0.97	0.00	0.00	0.17	0.00
2	1.00	0.43	0.54	0.00	0.01	0.03	0.00	0.00	0.90	0.00
3	1.00	0.02	0.41	0.00	0.57	0.00	0.00	0.00	0.90	0.00
C2_1	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.96	0.00
C2_2	1.00	0.02	0.00	0.00	0.97	0.00	0.00	0.00	0.01	0.00
ExCulvert	1.00	0.02	0.00	0.00	0.00	0.98	0.00	0.00	0.02	0.00

Conduit		Hours Full Upstream		Hours Above Full Normal Flow	
ExCulvert	0.01	0.01	0.01	0.35	0.01

Analysis begun on: Tue Aug 25 10:57:20 2020 Analysis ended on: Tue Aug 25 10:57:20 2020 Total elapsed time: < 1 sec

Continuous Simulation

- Input File - Report F

LGN Consulting Engineering Ltd.

To reduce the amount of data in the input file, the following sections have been excluded in this Appendix:

Coordinates
 Vertices
 Polygons

[TITLE]

Ascension Post-Development 400 mm Sandy Loam Continuous Simulation Calgary 1960-2014

<pre>iii</pre>	[OPTIONS] ;;Options	Value							
FLOW_UNITS CMS WITST CMS WITST CMS WITST CMS WITST CMS WITST DEPTH WIN_SLOPE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
FLOM. ROUTING DYNNAVE LINK OFFSET DEPTH MIN.SLOPE 0 ALLOW_PONDING NO SKIP_START_DATE 01/01/3600 REPORT_START_DATE 01/01/3600 REPORT_STEP 01:00:00 RUE_STEP 00:00:00 RUE_STEP 00:00 RUE_STEP 00		CMS							
LINE OPFSETS DEPTH KIN SLOPE ALLOW_PONDING NO ALLOW_PONDING NO START_DATE 01/01/1960 START_DATE 01/01/1960 REPORT_START_TIME 01:00:00 END_DATE 12/31/2014 END_TIME 23:00:00 SWEEP_START 01/01 SWEEP_START 02:00 DATE 12/31/2014 DATE	INFILTRATION	GREEN_AMPT							
MIN_SLOPE 0 SKTE_STRAP_STARE NO SKTE_STRAP_STARE 01.00:00 STAT_TIME 01.00:00 REPORT_START_DATE 01.00:00 REPORT_START_DATE 01.00:00 REPORT_START_DATE 01.00:00 SWEEP_START 01.00 SWEEP_START 00 SWEEP_START 01.00 SWEEP_START 00 SWEEP_START 01.00 SWEEP_START 00 SWEEP_START 00 SWEEP_	FLOW_ROUTING	DYNWAVE							
ALLÖR, PONDING NO START_DATE 01,01/1960 START_DATE 01,01/1960 REPORT_START_DATE 01,01/1960 REPORT_START_TIME 01.00:00 END_DATE 12/31/2014 END_TIME 23:00:00 SWEEP_START 01/01 SWEEP_START 00.05 TWEENSTEP 00:00:00 TWEET_STEP 00:00:00 TWEET_STEP 00:00 SWEEP_STEP 00:00 SWEE	LINK_OFFSETS	DEPTH							
SKIP_STRAPU_STATE NO START_DATE 01/01/1960 START_TIME 01:00:00 REPORT_STRAP_DATE 01:00:00 REPORT_STRAP_DATE 01:00:00 REPORT_STRAP_01 END_DATE 12/31/2014 END_TIME 23:00:00 SWEEP_START 01/01 SWEEP_START 01/01 SWEEP_START 01:00:00 REPORT_STEP 00:10:00 REPORT_STEP 00:00:00 REPORT_STEP 00:00:00 RULE_STEP 00:00:00 RULE_STEP 00:00:00 RULE_STEP 00:00 RULE_STEP 00 RULE_STEP 00:00 RULE_STEP 00:00 RULE	MIN_SLOPE								
START_INTE 01:00:00 REPORT_START_ITIVE 01:00:00 REPORT_START_ITIVE 01:00:00 END_DATE 12/31/2014 END_TIME 23:00:00 SMEEP_START 01/01 SMEEP_END 12/31/ DRV_DAYS 0 REPORT_STEP 01:00:00 WET_STEP 00:00:00 RUL_STEP 00:00:00 RUL_STEP 00:00:00 INNERTIAL_DAMPING PARTIAL NORMAL_FLOQ_LIMITED BOTH FORCE_MAIN_EQUATION H-W VALTABLE_STEP 0.75 LENGTHENING_STEP 0 0.0015 SYS_FLOW_TOL 5 LENGTHENING_STEP 0.75 LENGTHENING_STEP 0.75 L	ALLOW_PONDING	NO							
START_TIME 01:00:00 REPORT_START_DATE 01:00:00 REPORT_START_DATE 01:00:00 REPORT_START_DATE 01:00:00 REPORT_START_DATE 01:00:00 SMEEP_STAR 01:01 SMEEP_STAR 01:	SKIP_STEADY_STATE	NO							
REPORT_START_ITME 01:00:00 END_DATE 12/31/2014 END_TIME 23:00:00 SMEEP_START 01/01 SMEEP_END 12/711 DRY_DAYS 0 REPORT_STEP 01:00:00 WET_STEP 00:00:00 RULTING_STEP 00:00:00 RULTING_STEP 00:00:00 INNERTIAL_DAMPING PARTIAL NORMAL_FLOQ_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARTABLE_STEP 0.75 LENGTHENING_STEP 0 0.75 LENGTHENING_STEP 0 MAX_TRALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LENGTHENING_STEP 0.5 HINIJAWA_STEP 0.5 HINIJAWA_	_								
REPORT_START_TIME 01:00:00 END_DATE 12/31/2014 END_TTME 23:00:00 SWEEP_STAR 01/01 SWEEP_STAR 01/01 SWEEP_STAR 01/01 SWEEP_STAP 00:10:00 REPORT_STEP 00:15:00 DRV_STEP 00:15:00 DRV_STEP 00:10:00 RULE_STEP 00:10 RULE_STEP 00:00 RULE_STEP 00:0									
END_DATE 12/31/2014 END_TIME 23:00:00 SMEEP_START 01/01 SMEEP_END 12/31 DRV_DAYS 0 REPORT_STEP 01:00:00 WET_STEP 00:00:00 ROUTING_STEP 00:00:00 INERTAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LEMGTHENING_STEP 0 0:00:00 NAV_ITALS SYS_FLOW_TOL 5 SYS_FLOW_TOL 5 WILLSYSE 0.00 SYS_FLOW_TOL 5 SYS_FLOW_TOL 5 WILLSYSE 0.00 SYS_FLOW_TOL 5 SYS_FLOW_TOL 5 SYS_FLOW_TO									
END_TIME 23:00:00 SWEEP_STAR 01/01 SWEEP_STAR 01/01 SWEEP_STAR 01/01 SWEEP_STAP 01:00:00 REF_STEP 01:00:00 RUTING_STEP 00:00:00 RUTING_STEP 00:00:00 RUTING_STEP 00:00 RUTING_STEP 00:00 RUTING_STEP 0.5 LENGTHENING_STEP 0.5 LENGTHENING_STEP 0.55 LENGTHENING_STEP 0.55 SYS_FLOW_TOL 5 SYS_FLOW_TOL 5 SYS_FL									
SWEEP_START 01/01 SWEEP_END 12/31 DRV_DAVS 0 REFORT_STEP 01:00:00 WET_STEP 00:00:00 RULTING_STEP 00:00:00 RULTING_STEP 00:00:00 INERTAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LEMGTHENING_STEP 0 0.0015 SYS_FLOW_TOL 5 HILLSATE 0 HILLSATE 0 0.0015 SYS_FLOW_TOL 5 HILLSATE 0 HILLSATE 0 HILLSAT	-								
SWEEP_END 12/31 DRV_DAYS 0 REPORT_STEP 01:00:00 REP.STEP 00:15:00 DRV_TSTP 00:00:00 DRV_TSTP 00:00:00 DRV_TSTP 00:00:00 DRVTSTP 00:00:00 NORMAL_FLOWLING PARTIAL NORMAL_FLOWLING PARTIAL NORMAL_FLOWLING PARTIAL NORMAL_FLOWLING 00:00:00 NORMAL_FLOWLING 00:00:00 NORMAL_FLOWLING 00:00:00 NORMAL_FLOWLING 00:00 NORMAL_FLOWLING 00:00 SYS_FLOW_TOL 5 LAT_FLOWTOL 5 MINIMM_STEP 0.5 MINIMM_STEP 0.5 MINIMM_STEP 0.5 TIMEEADS 4 [EVAPORATION] ::									
DRV_DRVS 0 REPORT_STEP 00:15:00 DRV_STEP 00:00:00 RULTSISTEP 00:00 RULTSISTEP 00 RULTSISTEP 00 RULT	_								
REPORT_STEP 01:00:00 DRV_STEP 00:15:00 DRV_STEP 00:00:00 DRV_STEP 00:00:00 DRV_STEP 00:00:00 INNERTIAL_DAMPING PARTIAL NORMALF_LOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LINGTHENING_STEP 0.5 THREAD5 4 [EVAPORATION] ;;//ve Parameters ;;									
WET_STEP 00:15:00 DRV_STEP 00:00:00 RULL_STEP 00:00:00 INNETTAL_DAMPING PARTIAL NORMALFLOULINTED 00:00:00 INNETTAL_DAMPING PARTIAL NORMALFLOULINTED 00:00:00 INNETTAL_DAMPING PARTIAL NORMALFLOULINTED 00:00:00 INNETTAL_DAMPING PARTIAL NORMALFLOULINTED 00:00:00 NAX_TRIALS 8 HEAD_TOLERANCE 0:0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 INTIMUM_STEP 0:5 THREADS 4 [EVAPORATION] :: :::Thresenics 4 [EVAPORATIVE] 0:10:0:30:12:2:40:3:6:1:6:6:15:6:14:0:13:2:14:1:14:6:13:7:14:9 NOMTHLY NO 0:5:0:6:2:0:6:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0									
DRV_STEP 01:00:80 RULE_STEP 00:00:00 INERTIAL_DAMPTNO PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LINTFLOW_LIMITED 0.5 THREAD5 4 [EVAPORATION] ;;Type Parameters ;;Type Parameters ;;T	_								
RULE_STEP 00:00:00 INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0.75 LENGTHENING_STEP 0.75 LENGTHENING_STEP 0.75 LAT_FLOW_TOL 5 IAT_FLOW_TOL 6 IAT_FLOW_TOL 5 IAT_FLOW_TOL 5 IAT_FLOW_TOL 5 IAT_FLOW_TOL 5 IAT_FLOW_TOL 5 IAT_FLOW_TOL 6 IAT_FLOW_TOL 5 IAT_FLOW_TOL 5 IAT_FLOW_TOL 6 IAT_FLOW_TOL 5 IAT_FLOW_TOL 6 IAT_FLOW_TOL 7 INTEGER 5 IAT_FLOW_TOL 7 INTEGER 5 IAT_FLOW_TOL 7 INTEGER 5 IAT_FLOW_TOL 7 INTEGER 5 IAT_FLOW_TOL 7 IAT_FLOW_TOL 7 IAT_FLOW									
RULE_STEP 00:00:00 INERTIAL_DAPTING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTIAL_NATION STEP MIN_SURFAREA 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MININUMSTEP 0.5 THREADS 4 [EVAPORATION] ;;jipp Jipp 0.10 0.39 1.12 2.40 3.61 4.57 4.99 4.00 2.24 0.99 0.57 0.07 DRY_ONLY NO 0.10 0.39 1.12 2.40 3.61 4.57 4.99 4.00 2.24 0.99 0.57 0.07 DRY_ONLY NO 0.10 0.39 1.12 2.40 3.61 4.57 4.99 4.00 2.24 0.99 0.57 0.07 DRY_ONLY NO 1.0 1.6.5 1.6.16 1.6.1.0 1.2.1.1 1.6 1.7									
INERTIAL_DAMPING PARTAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING STEP 0.75 LENGTHENING STEP 0.75 LAT_FLOW_TOL 5 SVS_FLOW_TOL 5 LAT_FLOW_TOL 5 HINDRUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Type Parameters ;:									
NORMAL_FLOW_LINITED BOTH VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MAX_TETALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 LAT_FLOW_TOL 5 [EVAPORATION] ;;Type Parameters ;;									
FORCE MAIN_EQUATION H-W VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 0 MAX_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 LAT_FLOW_TOL 5 MININUM_STEP 0.5 TIMEADS 4 [EVAPORATION] ;;Type Parameters ;;	_								
VARLABLE_STEP 0.75 LENGTHENING_STEP 0 MAX_TITALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOU_TOL 5 HINITMUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Type Parameters ;;									
LENGTHENING_STEP 0 MIN_SURFAREA 0 MMA_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOU_TOL 5 LAT_FLOW_TOL 5 HININUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Jype Parameters ;:									
MIN_SURFAREA 0 MAX_TRIALS 8 MAX_TRIALS 8 HEAD TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Type Parameters ;;									
MAA_TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MININUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Type Parameters ;; MONTHLY 0.10 0.39 1.12 2.40 3.61 4.57 4.99 4.00 2.24 0.99 0.57 0.07 DRY_ONLY NO [TEMPERATURE] TIMESERIES YYC-Temp60-14 WINDSPEED MONTHLY 14.8 14.6 15.0 16.5 16.6 15.6 14.0 13.2 14.1 14.6 13.7 14.9 SNOWHEL 0 0.5 0.6 1200 50.0 0.0 ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	_	0							
SYS_FLOW_TOL 5 LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;;;;; ;;;;; Parameters ;;:		8							
LAT_FLOW_TOL 5 MINIMUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Type Parameters ;;	HEAD_TOLERANCE	0.0015							
MINTMUM_STEP 0.5 THREADS 4 [EVAPORATION] ;;Type Parameters ;;Type	SYS_FLOW_TOL	5							
THREADS 4 [EVAPORATION] ;;Type Parameters ;;jType Parameters [THMSERIES YC-Temp60-14 MINDSPEED MONTHLY 14.8 14.6 11MESERIES YCC-Temp60-14 MINDSPEED MONTHLY 14.8 14.6 11MESERIES YCC-Temp60-14 ADC PERVIOUS PERVIOUS 0.10 1.0 1.0 ADC PERVIOUS PERVIOUS 0.10 1.0 1.0 YC-Pre60-14 INTENSITY 1.0 1.0 File Total Pent. Curb Snow Jij Marea Imperv Width Slope Length <t< td=""><td>LAT_FLOW_TOL</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	LAT_FLOW_TOL	5							
<pre>[EVAPORATION] ;;Type Parameters ;;</pre>	MINIMUM_STEP	0.5							
<pre>;;Type Parameters ;;</pre>	THREADS	4							
<pre>;;Type Parameters ;;</pre>									
<pre>;;=</pre>									
MONTHLY 0.10 0.39 1.12 2.40 3.61 4.57 4.99 4.00 2.24 0.99 0.57 0.07 DRY_ONLY NO ITEMPERATURE] ITEMPERATURE] ITEMPERATURE] 1000000000000000000000000000000000000									
DRY_ONLY NO [TEMPERATURE] TIMESERIES YYC-TEMP60-14 WINDSPEED MONTHLY 14.8 14.6 15.0 16.5 16.6 15.6 14.0 13.2 14.1 14.6 13.7 14.9 SNOWMELT 0 0.5 0.6 1200 50.0 0.0 ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			2 40 2 64		4 00	2.24		- 0 07	
[TEMPERATURE] TIMESERIES YYC-Temp60-14 WINDSPEED MONTHLY 14.8 14.6 15.0 16.5 16.0 13.2 14.1 14.6 13.7 14.9 SNOWMELT 0 0.5 0.6 1200 50.0 0.0 ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ADC PERVIOUS 0.10 0.35 0.53 0.66 0.75 0.82 0.87 0.92 0.95 0.98 [RAINGAGES]		0.39 1.12	2.40 3.61	4.57 4.99	4.00	2.24 6	0.99 0.5	0.0/	
TIMESERIES YYC-Temp60-14 WINDSPEED MONTHLY 14.8 14.6 15.0 16.5 16.6 15.6 14.0 13.2 14.1 14.6 13.7 14.9 SNOWMELT 0 0.5 0.6 1200 50.0 0.0 0.0 ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ADC PERVIOUS 0.10 0.35 0.53 0.66 0.75 0.82 0.95 0.98 [RAINGAGES]									
WINDSPEED MONTHLY 14.8 14.6 15.0 16.6 15.6 14.0 13.2 14.1 14.6 13.7 14.9 SNOWMELT 0 0.5 0.6 1200 50.0 0.0 ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ADC IMPERVIOUS 0.10 0.35 0.53 0.66 0.75 0.82 0.87 0.92 0.95 0.98 [RAINGAGES] Rain Time Snow Data Data Name Type Intrvl Catch Source <td< td=""><td></td><td>m60 14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		m60 14							
SNOWMELT 0 0.5 0.6 1200 50.0 0.0 ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			. 15 0 16 5 16 6	1 6 1 1 0	12 2 14 1	14 6 12	7 1 / 0		
ADC IMPERVIOUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				5 15.0 14.0	13.2 14.1	14.0 15.	/ 14.9		
ADC PERVIOUS 0.10 0.35 0.53 0.66 0.75 0.82 0.87 0.92 0.95 0.98 [RAINGAGES]				101010	1 0				
[RAINGAGES];;RainTimeSnowDataTypeIntrvlCatchSource;;TypeIntrvlCatchSource;;INTENSITY1:00FILE"D:_LGN\PCSWMM\STA.3031093 2014.dat" STA.3031093 MM[SUBCATCHMENTS]TotalPcnt.Pcnt.CurbSnow;;NameRaingageOutletTotalPcnt.Pcnt.LengthPack;;Commercial-MFVYC-Pre60-14Wet-Pond26.02651002082.1220Snowpack1;Natural Drainage CourseFx-1YYC-Pre60-14J137.78583.7917.13150Snowpack1Katural Drainage CourseFx-2YYC-Pre60-14OF-15.78958578.9530Snowpack1						6 98			
RainTimeSnowDataSNameTypeIntrvl CatchSourceSourceIntrvl CatchSourceIntrvl CatchSourceIntrvl CatchFILE''D:_LGN\PCSWMM\STA.30310932014.dat"SUBCATCHMENTS]Intrensitive''STotal''SPcnt.''SOutletAreaImperv''SImperv''SOutlet''SOutlet''SSnow''SSnow''SOutlet''SSnow''SSnow''SSnow''SOutlet''SSnow<		0.10 0.00	0.00 0.00	0.02 0.07	0.52 0.55	0.90			
RainTimeSnowDataSNameTypeIntrvl CatchSourceSourceIntrvl CatchSourceIntrvl CatchSourceIntrvl CatchFILE''D:_LGN\PCSWMM\STA.30310932014.dat"SUBCATCHMENTS]Intrensitive''STotal''SPcnt.''SOutletAreaImperv''SImperv''SOutlet''SOutlet''SSnow''SSnow''SOutlet''SSnow''SSnow''SSnow''SOutlet''SSnow<	[RATNGAGES]								
j; Name Type Intrvl Catch Source j;		in Time	Snow Data						
;;									
YYC-Pre60-14 INTENSITY 1:00 1.0 FILE "D:_LGN\PCSWMM\STA.3031093 2014.dat" STA.3031093 MM [SUBCATCHMENTS]			·						
[SUBCATCHMENTS];;ImpaceTotalPcnt.Pcnt.CurbSnow;;NameRaingageOutletAreaImpervWidthSlopeLengthPack;;;Commercial-MFCom-MFYYC-Pre60-14Wet-Pond26.02651002082.1220Snowpack1;Natural Drainage Course;Natural Drainage Course37.78583.7917.13150Snowpack1Ex-2YYC-Pre60-140F-15.78958578.9530Snowpack1		TENSITY 1:00	1.0 FILE	"D:\L	.GN\PCSWMM	1\STA.3031	.093 2014.	dat" STA.	3031093 MM
j;Total AreaPcnt.Pcnt.Curb LengthSnowj;NameRaingageOutletAreaImpervWidthSlopeLengthPackj;;Commercial-MFCom-MFYYC-Pre60-14Wet-Pond26.02651002082.1220Snowpack1;Natural Drainage CourseEx-1YYC-Pre60-14J137.78583.7917.13150Snowpack1;Natural Drainage CourseEx-2YYC-Pre60-140F-15.78958578.9530Snowpack1									
;;NameRaingageOutletAreaImpervWidthSlopeLengthPack;Commercial-MF	[SUBCATCHMENTS]								
;;NameRaingageOutletAreaImpervWidthSlopeLengthPack;;;Commercial-MFCom-MFYYC-Pre60-14Wet-Pond26.02651002082.1220Snowpack1;Natural Drainage CourseEx-1YYC-Pre60-14J137.78583.7917.13150Snowpack1;Natural Drainage CourseEx-2YYC-Pre60-140F-15.78958578.9530Snowpack	;;			Total	Pcnt.		Pcnt.	Curb	Snow
;Commercial-MF Com-MF YYC-Pre60-14 Wet-Pond 26.0265 100 2082.12 2 0 Snowpack1 ;Natural Drainage Course Ex-1 YYC-Pre60-14 J1 37.7858 3.7 917.131 5 0 Snowpack1 ;Natural Drainage Course Ex-2 YYC-Pre60-14 0F-1 5.7895 8 578.95 3 0 Snowpack	;;Name Rai	ingage	Outlet	Area	Imperv	Width	Slope	Length	Pack
Com-MF YYC-Pre60-14 Wet-Pond 26.0265 100 2082.12 2 0 Snowpack1 ;Natural Drainage Course									
;Natural Drainage Course Ex-1 YYC-Pre60-14 J1 37.7858 3.7 917.131 5 0 Snowpack1 ;Natural Drainage Course Ex-2 YYC-Pre60-14 OF-1 5.7895 8 578.95 3 0 Snowpack	;Commercial-MF								
Ex-1 YYC-Pre60-14 J1 37.7858 3.7 917.131 5 0 Snowpack1 ;Natural Drainage Course			Wet-Pond	26.0265	100	2082.12	2	0	Snowpack1
;Natural Drainage Course Ex-2 YYC-Pre60-14 OF-1 5.7895 8 578.95 3 0 Snowpack									
Ex-2 YYC-Pre60-14 0F-1 5.7895 8 578.95 3 0 Snowpack			J1	37.7858	3.7	917.131	5	0	Snowpack1
			<u></u>				_		
;Natural Drainage Course			UF-1	5.7895	8	578.95	3	0	Snowpack
	;Natural Drainage Co	our'se							

LCD Consulting Engineering Ltd.

Ex-3	YYC-Pre60-	-14	J3		13.52	2	1352	8	0	Snowpack	
;Offsite Areas											
0S-1	YYC-Pre60-	-14	0S-2		3.7839	6	378.39	5	0	Snowpack1	
;Offsite Areas											
0S-2	YYC-Pre60-	-14	SF-2		1.7365	9	347.3	5	0	Snowpack1	
;Pond Area											
Pond-ER	YYC-Pre60-	·14	Wet-I	Pond	3.8906	41.7	972.65	2	0	Snowpack1	
;Residential											
SF-1	YYC-Pre60-	-14	Dry-l	Pond	8.4971	100	679.768	3	0	Snowpack1	
;Residential											
SF-2	YYC-Pre60-	-14	Wet-I	Pond	13.3461	100	1067.68	83	0	Snowpack1	
;Residential									_		
SF-3	YYC-Pre60-	-14	Wet-I	Pond	45.7774	100	3662.19	2 5	0	Snowpack1	
;Wetland Area								_	_		
Wetland-ER	YYC-Pre60-	-14	EX-W	etland	2.4733	49.7	206.108	2	0	Snowpack1	
[SUBAREAS] ;;Subcatchment	N-Imperv	N-Per		S-Imperv	S-Perv	PctZero	Rout	oTo	PctRouted		
	N-Tilberv	N-Per	v	3-Tillberv	3-Perv	PCLZEPO			PETROULEU	_	
;; Com-MF	0.015	0.25		1.6	3.2	0		10US	29	-	
Ex-1	0.015	0.3		2	7.5	0		IOUS	100		
Ex-2	0.014	0.3		2	7.5	0		IOUS	100		
Ex-3	0.014	0.3		2	7.5	0		IOUS	100		
0S-1	0.014	0.3		2	7.5	0		IOUS	100		
0S-2	0.014	0.3		2	7.5	õ		IOUS	100		
Pond-ER	0.015	0.25		1.6	3.2	0		IOUS	3		
SF-1	0.015	0.25		1.6	3.2	0		IOUS	44		
SF-2	0.015	0.25		1.6	3.2	0		IOUS	48		
SF-3	0.015	0.25		1.6	3.2	0		IOUS	47		
Wetland-ER	0.015	0.25		1.6	3.2	0		IOUS	8		
[INFILTRATION]											
;;Subcatchment	Suction	HydCo	n	IMDmax							
;;											
Com-MF	110	14.15		0.246							
Ex-1	110	14.15		0.246							
Ex-2	110	14.15		0.246							
Ex-3	110	14.15		0.246							
0S-1	110	14.15		0.246							
		14.12		0.240							
0S-2	110	14.15		0.246							
0S-2	110	14.15		0.246							
OS-2 Pond-ER	110 110	14.15 14.15		0.246 0.246							
OS-2 Pond-ER SF-1 SF-2 SF-3	110 110 110	14.15 14.15 14.15		0.246 0.246 0.246							
OS-2 Pond-ER SF-1 SF-2	110 110 110 110	14.15 14.15 14.15 14.15		0.246 0.246 0.246 0.246							
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER	110 110 110 110 110	14.15 14.15 14.15 14.15 14.15		0.246 0.246 0.246 0.246 0.246							
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS]	110 110 110 110 110 110	14.15 14.15 14.15 14.15 14.15 14.15		0.246 0.246 0.246 0.246 0.246							
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;;	110 110 110 110 110	14.15 14.15 14.15 14.15 14.15 14.15		0.246 0.246 0.246 0.246 0.246							
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;;	110 110 110 110 110 110 110 Type/Layer	14.15 14.15 14.15 14.15 14.15 14.15		0.246 0.246 0.246 0.246 0.246							
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 110 Type/Layer BC	14.15 14.15 14.15 14.15 14.15 14.15 14.15		0.246 0.246 0.246 0.246 0.246 0.246 0.246			_				
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE	14.15 14.15 14.15 14.15 14.15 14.15 14.15 7 Param 5		0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.41	2	5	0	-	110	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL	14.15 14.15 14.15 14.15 14.15 14.15 Param	eters	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175	0.081	5 27.0	18	7	110	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE	14.15 14.15 14.15 14.15 14.15 14.15 14.15 7 Param 5 400 0.000	eters	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5	0.081 0	27.0	8		110	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL	14.15 14.15 14.15 14.15 14.15 14.15 Param	eters	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175	0.081		8	7 0	110	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE	14.15 14.15 14.15 14.15 14.15 14.15 14.15 7 Param 5 400 0.000	eters	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5	0.081 0	27.0	18		110	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0 Param 5 400 0.000 0	eters 	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5 6	0.081 0 6	27.0 0		0		
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Proces	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0 Param 5 400 0.000 0	eters 	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5	0.081 0 6	27.0 0				
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Proces FromPerv	14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 5 400 0.000 0	neters 11 Numbo	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5 6	0.081 0 6	27.0 0		0		
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Proces FromPerv	14.15 14.15 14.15 14.15 14.15 14.15 7 Param 9.000 0 0.000 0	eters 11 Numbo	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5 6	0.081 0 6	27.0 0		0		_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	Numbo	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area	0.175 0.5 6 Width	0.081 0 6 Init	27.0 0 Satur F	romImp	0 rv ToPerv		_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	eters 11 Numbo	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246	0.175 0.5 6	0.081 0 6	27.0 0 Satur F		0	Report File	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam Com-MF	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0 Param 5 400 0.000 0	Numbo 	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area 44639	0.175 0.5 6 Width	0.081 0 6 Init	27.0 0 Satur F 2	romImp	0 rv ToPerv 0	Report File	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;;	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0 Param 5 400 0.000 0	Numbo	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area	0.175 0.5 6 Width	0.081 0 6 Init	27.0 0 Satur F 2	romImp	0 rv ToPerv	Report File	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam	14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0 55	Numbo 	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806	0.175 0.5 6 Width	0.081 0 6 Init	27.0 0 Satur F 2 4	romImp	0 rv ToPerv 0	Report File	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;; SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam Ø SandyLoam	14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0 55	Numbo 1 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area 44639	0.175 0.5 6 Width 0 0	0.081 0 6 Init	27.0 0 Satur F 2 4	romImp 9	0 rv ToPerv 0 0	Report File * *	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam [LID_USAGE] ;;Subcatchment Drain to ;; Com-MF * SF-1 * SF-2	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	Numbo 1 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area 44639 48806 59639	0.175 0.5 6 Width 0 0	0.081 0 6 Init	27.0 0 Satur F 2 4 4	romImp 9	0 rv ToPerv 0 0	Report File * *	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;sandyLoam SandyLoa	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806	0.175 0.5 6 Width 0 0 0	0.081 0 6 Init 0 0 0	27.0 0 Satur F 2 4 4	romImp 19 14 18	0 rv ToPerv 0 0 0	Report File * * *	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;;	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area 44639 48806 59639	0.175 0.5 6 Width 0 0 0	0.081 0 6 Init 0 0 0	27.0 0 Satur F 2 4 4	romImp 19 14 18	0 rv ToPerv 0 0 0	Report File * * *	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area 44639 48806 59639	0.175 0.5 6 Width 0 0 0	0.081 0 6 Init 0 0 0	27.0 0 Satur F 2 4 4	romImp 19 14 18	0 rv ToPerv 0 0 0	Report File * * *	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam SandyLoam SandyLoam SandyLoam SandyLoam [LID_USAGE] ;;Subcatchment Drain to ;; Com-MF * SF-1 * SF-2 * SF-3 *	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0	14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.396 0.75 0.5 er Area 44639 48806 59639	0.175 0.5 6 Width 0 0 0	0.081 0 6 Init 0 0 0	27.0 0 Satur F 2 4 4	romImp 9 4 8 7	0 rv ToPerv 0 0 0	Report File * * *	_
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 SandyLoam 0	14.15 14.15 14.15 14.15 14.15 14.15 7 Param 0.000 0 	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.5 er Area 44639 48806 59639 213860 0.2	0.175 0.5 6 Width 0 0 0 0	0.081 0 6 Init 0 0 0 0 0.10	27.0 0 Satur F 2 4 4 4 4 0.00	romImp 9 4 8 8 7	0 rv ToPerv 0 0 0 0 0	Report File * * * * *	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ;;	110 110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 SandyLoam 0 PLOWABLE IMPERVIOUS	14.15 14.15 14.15 14.15 14.15 14.15 14.15 5 400 0.000 0 55 6.005	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806 59639 213860 0.2 0.2	0.175 0.5 6 Width 0 0 0 0 0	0.081 0 6 Init 0 0 0 0 0 0 0	27.0 0 Satur F 2 4 4 4 4 0.00 0.00	romImp 9 4 4 8 7 7	0 rv ToPerv 0 0 0 0 0	Report File * * * * * 0.3 25	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 SandyLoam 0 PLOWABLE IMPERVIOUS	14.15 14.15 14.15 14.15 14.15 14.15 14.15 5 400 0.000 0 55	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806 59639 213860 0.2 0.2 0.2	0.175 0.5 6 Width 0 0 0 0 0 0	0.081 0 6 Init 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.0 0 Satur F 2 4 4 4 4 4 0.00 0.00 0.00	romImp 9 4 4 8 7 7	0 rv ToPerv 0 0 0 0 0 0 0	Report File * * * * *	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 PLOWABLE IMPERVIOUS REMOVAL	14.15 14.15 14.15 14.15 14.15 14.15 14.15 7 Param 0.000 0 35 5 0.005 0.05 0.05 0.05 25	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806 59639 213860 0.2 0.2 0.2 0.2	0.175 0.5 6 Width 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.081 0 6 Init 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.0 0 Satur F 2 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00	romImp 9 44 8 7 7	0 rv ToPerv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Report File * * * * * * *	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 SandyLoam 0 PLOWABLE IMPERVIOUS REMOVAL PLOWABLE	14.15 14.15 14.15 14.15 14.15 14.15 14.15 7 Param 0.000 0 0 55 5 0.05 5 0.05 25 0.05	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806 59639 213860 0.2 0.2 0.2 0.2 0.0 0.2	0.175 0.5 6 Width 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.081 0 6 Init 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.0 0 Satur F 2 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00 0.	romImp 9 44 -8 -7 -7 	0 rv ToPerv 0 0 0 0 0 0 0 0 0 0 0 0 0	Report File * * * * * * 0.3 25 0.3	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; ; sandyLoam SandyLo	110 110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 PLOWABLE IMPERVIOUS REMOVAL PLOWABLE IMPERVIOUS	14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 0.000 0 0.000 0 0 55 0.05 50.05 0.05	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806 59639 213860 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.175 0.5 6 Width 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.081 0 6 Init 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.0 0 Satur F 2 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00 0.	romImp 9 4 4 8 7 7	0 rv ToPerv 0 0 0 0 0 0 0 0 0 0 0 0 0	Report File * * * * 0.3 25 0.3 25	
OS-2 Pond-ER SF-1 SF-2 SF-3 Wetland-ER [LID_CONTROLS] ;; SandyLoam	110 110 110 110 110 110 Type/Layer BC SURFACE SOIL STORAGE DRAIN LID Process FromPerv SandyLoam 0 SandyLoam 0 SandyLoam 0 SandyLoam 0 PLOWABLE IMPERVIOUS REMOVAL PLOWABLE	14.15 14.15 14.15 14.15 14.15 14.15 14.15 14.15 5 400 0.000 0 .000 0 .005 5 0.05 25 0.05	Numbo 1 1 1	0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.75 0.5 er Area 44639 48806 59639 213860 0.2 0.2 0.2 0.2 0.0 0.2	0.175 0.5 6 Width 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.081 0 6 Init 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.0 0 Satur F 2 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00 0.	romImp 9 4 4 8 7 7	0 rv ToPerv 0 0 0 0 0 0 0 0 0 0 0 0 0	Report File * * * * * * 0.3 25 0.3	

[JUNCTIONS] ;; ;;Name	Invert Elev.	Max. Depth	Init. Depth	Surch Depth	-	Ponded Area						
;; J1 J2 J3 OF-1 OF-2	1205.5 1202.5 1166.5 1192 1155.74	0 0 5.327 1.69 3	0 0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	-					
[OUTFALLS] ;; ;;Name ;;	Invert Elev.	Outfall Type		/Table Series	Tio Gat	le ce Route T	0					
OF-3 OF-W	1153.47 1197	FREE FREE			NO NO							
[STORAGE] ;; ;;Name		lax. In: Depth Dep		orage rve	Curve Params	5				Evap. Frac. I	nfiltration	parameters
;; Dry-Pond Ex-Wetland Wet-Pond	1197.5 1	5 0.3 5 0.3	3 ТА		Dry-Po Wetlar Wet-Po	nd		e e e)	1 1 1		
[CONDUITS] ;; ;;Name	Inlet Node	Out: Node		Leng	;th	Manning N	Inle Offs		Outlet Offset		Max. Flow	
;; ;Culvert 1 ;Culvert	Ex-Wetland	I OF-V	N	18.6		0.015	0.3		0	0	0	
2 ;Natural Channel		J2		67.6	87	0.017	0		0	0	0	
3 ;Natural Channel C2 1	J2 0F-1	OF-1 J3	L	291. 498.		0.01 0.01	0 0		0 0	0 0	0	
;Natural Channel C2_2		0F - 2	2	305.		0.01	0		0	0	0	
;Culvert ExCulvert	0F-2	OF - 3	3	77.3	3	0.017	0		0	0	0	
[OUTLETS] ;; ;;Name	Inlet Node	Out: Node		Outf Heig		Outlet Type		Qcoe QTab		Qexpo	Flap on Gate	
;; ICD-E ICD-W	Wet-Pond Dry-Pond	OF-2 OF-2		3.5 0		TABULAR/ TABULAR/		R156 R28.			NO NO	
[XSECTIONS] ;;Link ;;	Shape	Geom1		Geom2	Geo	om3 G	eom4	Bar	rels			
1 2 3 C2_1	CIRCULAR CIRCULAR IRREGULAR IRREGULAR IRREGULAR		18	0 0 0 0	0 0 0 0	0 0 0 0 0		1 1 1 1				
ExCulvert [TRANSECTS]	CIRCULAR	0.63		0	0	0		1				
	07 1188.4	6 69.488	1188.22	72.899	0.0 1187	0.0 7.75 73.0	6 41 11	0.0 .87.74	0.0 73.839			
NC 0.35 0.35 X1 Section6 GR 1177.03 80.0 GR 1176.26 83.9	13 1176.2	9 81.881	1176.24	83.111		0.0 5.8 83.2		0.0 .75.8				
[LOSSES] ;;Link ;;	Inlet	Outlet	Average	Flap	Gate 	SeepageRa	te -					
[POLLUTANTS] ;; ;;Name ;;	Mass Rai Units Con	icen. Cor	ncen.	I&I Concen.	Deca Coef	ay Sn Ff. On	ow Co- ly Nam	Pollut Ne	: .	Co-Pollut. Fraction	DWF Concen.	Init. Concen.

LGN Consulting Engineering Ltd.

PCSWMM Input File

TSS010	MG/L Ø	0	0	0	NO *		0.0	0	0
TSS020	MG/L 0	0	0	0	NO *		0.0	0	0
TSS050	MG/L Ø	0	0	0	NO *		0.0	0	0
		0	0	0	NO *		0.0	0	0
TSS150									
TSS500	MG/L 0	0	0	0	NO *		0.0	0	0
[LANDUSES]									
;;	Cleaning Frac								
;;Name	Interval Avai	lable Clean	ed						
;;									
Commercial	0 0	0							
Park	0 0	0							
Residential	0 0	0							
	• •	^o							
[COVERAGES]	1	D							
;;Subcatchment	Land Use	Percent							
;;	·····								
Com-MF	Commercial	74							
Com-MF	Residential	26							
0S-1	Park	94							
0S-1	Residential	6							
0S-2	Park	91							
0S-2	Residential	9							
Pond-ER	Park	100							
SF-2	Park	3.5							
SF-2	Residential	96.5							
SF-3	Park	13							
SF-3	Residential	87							
5.5	RESIDENTIAL	57							
[LOADINGS]	Dellutert								
;;Subcatchment	Pollutant	Loading							
;;									
[BUILDUP]									
;;LandUse	Pollutant	Function	Coeff1	Coeff2	Coeff3	Normalizer			
;;									
Commercial	TSS010	POW	460	1.26	0.95	AREA			
Commercial	TSS020	POW	180	0.493	0.95	AREA			
Commercial	TSS050	POW	260	0.712	0.95	AREA			
Commercial	TSS150	POW	460	1.26	0.95	AREA			
Commercial	TSS500	POW	640	1.753	0.95	AREA			
Park	TSS010	POW	4.8	0.0132	0.95	AREA			
Park	TSS020	POW	2.4	0.00658	0.95	AREA			
Park	TSS050	POW	39.6	0.1085	0.95	AREA			
Park	TSS150	POW	60	0.1644	0.95	AREA			
Park	TSS500	POW	13.2	0.0362	0.95	AREA			
Residential	TSS010	POW	460	1.26	0.95	AREA			
Residential	TSS020	POW	180	0.493	0.95	AREA			
Residential	TSS050	POW	260	0.712	0.95	AREA			
Residential	TSS150	POW	460	1.26	0.95	AREA			
Residential	TSS500	POW	460	1.753	0.95	AREA			
[WASHOFF]									
;;					Cleaning	BMP			
;;Land Use	Pollutant	Function	Coeff1	Coeff2	Effic.	Effic.			
;;									
Commercial	TSS010	EMC	41.4	1	0.0	0.0			
Commercial	TSS020	EMC	16.2	1	0.0	0.0			
Commercial	TSS050	EMC	23.4	1	0.0	0.0			
Commercial	TSS150	EMC	41.4	1	0.0	0.0			
Commercial	TSS500	EMC	57.6	1	0.0	0.0			
Park	TSS010	EMC	8	1	0.0	0.0			
Park		EMC	4	1	0.0				
	TSS020					0.0			
Park	TSS050	EMC	66	1	0.0	0.0			
Park	TSS150	EMC	100	1	0.0	0.0			
Park	TSS500	EMC	22	1	0.0	0.0			
Residential	TSS010	EMC	102	1	0.0	0.0			
Residential	TSS020	EMC	40	1	0.0	0.0			
Residential	TSS050	EMC	58	1	0.0	0.0			
Residential	TSS150	EMC	102	1	0.0	0.0			
Residential	TSS500	EMC	142	1	0.0	0.0			
[TREATMENT]									
;;Node	Pollutant	Function							
;;									
Wet-Pond	TSS010	C=TSS010*0	xp(-0.00000	592*NT/NEDT	н)				
			xp(-0.00000 xp(-0.00004						
Wet-Pond	TSS020								
Wet-Pond	TSS050		xp(-0.00028						
Wet-Pond	TSS150	C=122120*6	xp(-0.00195	UI/DEPIH)					

LGN Consulting Engineering Ltd.

Wet-Pond	TSS500	C=TS	SS500*exp(-0.0124*DT/DEPTH)
[CURVES] ;;Name	Туре	X-Value	Y-Value
;; R156.6	Rating	0	0
R156.6	Racing	0.093	0.0626
R156.6		0.343	0.12
R156.6		0.593	0.1578
R156.6		0.843	0.1881
R156.6		1.093	0.2142
R156.6		1.343	0.2374
R156.6		1.593	0.2586
R156.6		1.8434	0.2781
R156.6		2.143	0.2999
R28.8	Rating	0	0
R28.8		0.221	0.0033
R28.8		0.471	0.0048
R28.8		0.721	0.0059
R28.8 R28.8		0.971 1.221	0.0068 0.0077
R28.8		1.4712	0.0084
R28.8		1.771	0.0092
112010			01002
Dry-Pond	Storage	0	1052.764
Dry-Pond		0.25	1174.707
Dry-Pond		0.5	1301.147
Dry-Pond		0.75	1432.084
Dry-Pond		1	1567.517
Dry-Pond		1.25 1.5	1707.447 1868.381
Dry-Pond		1.5	1000.301
Wetland	Storage	0	1018
Wetland		0.25	7072
Wetland		0.5	8482
Wetland Wetland		0.75	9674
wettanu		1	11306
Wet-Pond	Storage	0	1265.308
Wet-Pond		0.25	1576.948
Wet-Pond		0.5	1897.202
Wet-Pond Wet-Pond		0.75 1	2226.072 3555.796
Wet-Pond		1.25	5008.793
Wet-Pond		1.5	5728.093
Wet-Pond		1.75	6475.087
Wet-Pond		2	7249.775
Wet-Pond		2.25	8052.157
Wet-Pond		2.5	8882.233
Wet-Pond		2.75	9740.003
Wet-Pond		3	11112.413
Wet-Pond		3.25	13375.288
Wet-Pond Wet-Pond		3.5 3.75	15788.106 17662.38
Wet-Pond		4	18721.113
Wet-Pond		4.25	19649.843
Wet-Pond		4.5	20588.121
Wet-Pond		4.75	21535.948
Wet-Pond		5	22493.323
Wet-Pond		5.25	23460.247
Wet-Pond		5.5	24432.341
[TIMESERIES]			
;;Name	Date	Time	Value
;;			
YYC-Temp60-14	FILE D:/	_LGN\PCSWM	<pre>N\TEMPERATURE DATA 1960-2014.dat"</pre>

[REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL

 [ADJUSTMENTS]

 ;;Parameter
 Subcatchment

 Monthly Adjustments

 ;;--------

 CONDUCTIVITY
 0.05
 0.05
 1.0
 1.0
 1.0
 1.0
 0.05
 0.05

[TAGS]

[MAP]
DIMENSIONS
UNITS-19800.5545345242 5666764.72393014 -17906.5841223704 5668793.47605977
Meters[COORDINATES]
;;Node
;;------X-Coord
------[VERTICES]
;;Link
;;------X-Coord
------[VERTICES]
;;Link
;;------X-Coord
------[POLYGONS]
;;Subcatchment
;;------X-Coord
------[SYMBOLS]
;;Gage
;;------X-Coord

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Ascension Post-Development 400 mm Sandy Loam Continuous Simulation

Pollutant Summary

Name	Units	Ppt. Concen.	GW Concen.	Kdecay 1/days	CoPollutant
TSS010	MG/L	0.00	0.00	0.00	
TSS020	MG/L	0.00	0.00	0.00	
TSS050	MG/L	0.00	0.00	0.00	
TSS150	MG/L	0.00	0.00	0.00	
TSS500	MG/L	0.00	0.00	0.00	

Landuse Summary

	Sweeping	Maximum	Last
Name	Interval	Removal	Swept
Commercial	0.00	0.00	0.00
Park	0.00	0.00	0.00
Residential	0.00	0.00	0.00

Raingage Summary

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Name	Data	Source	Data Type	Recording Interval
YYC-Pre60-14	D:\	LGN\PCSWMM\STA.3031093	2014.dat	

Subcatchment Summary **********

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
Com-MF	26.03	2082.12	100.00	2.0000 YYC-Pre60-14	Wet-Pond
Ex-1	37.79	917.13	3.70	5.0000 YYC-Pre60-14	J1
Ex-2	5.79	578.95	8.00	3.0000 YYC-Pre60-14	0F-1
Ex-3	13.52	1352.00	2.00	8.0000 YYC-Pre60-14	J3
0S-1	3.78	378.39	6.00	5.0000 YYC-Pre60-14	0S-2
0S-2	1.74	347.30	9.00	5.0000 YYC-Pre60-14	SF-2
Pond-ER	3.89	972.65	41.70	2.0000 YYC-Pre60-14	Wet-Pond
SF-1	8.50	679.77	100.00	3.0000 YYC-Pre60-14	Dry-Pond
SF-2	13.35	1067.69	100.00	3.0000 YYC-Pre60-14	Wet-Pond
SF-3	45.78	3662.19	100.00	5.0000 YYC-Pre60-14	Wet-Pond
Wetland-ER	2.47	206.11	49.70	2.0000 YYC-Pre60-14	Ex-Wetland

LID Control Summary

Subcatchment	LID Control	No. of Units	Unit Area	Unit Width	% Area Covered	% Imperv Treated	% Perv Treated
Com-MF	SandyLoam	1	44639.00	0.00	17.15	29.00	0.00
SF-1	SandyLoam	1	48806.00	0.00	57.44	44.00	0.00

SF-2	SandyLoam	1	59639.00	0.00	44.69	48.00	0.00
SF-3	SandyLoam	1	213860.00	0.00	46.72	47.00	0.00

Node Summary

		Invert	Max.	Ponded	External
Name	Туре	Elev.	Depth	Area	Inflow
J1	JUNCTION	1205.50	0.60	0.0	
J2	JUNCTION	1202.50	1.63	0.0	
J3	JUNCTION	1166.50	5.33	0.0	
0F-1	JUNCTION	1192.00	1.69	0.0	
0F-2	JUNCTION	1155.74	3.00	0.0	
OF - 3	OUTFALL	1153.47	0.63	0.0	
OF-W	OUTFALL	1197.00	0.45	0.0	
Dry-Pond	STORAGE	1170.00	1.50	0.0	
Ex-Wetland	STORAGE	1197.50	1.50	0.0	
Wet-Pond	STORAGE	1192.50	5.50	0.0	

Link Summary

Name	From Node	To Node	Туре	Length	%Slope R	oughness
1	Ex-Wetland	OF-W	CONDUIT	18.6	4.3051	0.0150
2	J1	J2	CONDUIT	67.7	4.4365	0.0170
3	J2	OF-1	CONDUIT	291.3	3.6074	0.0700
C2_1	OF-1	J3	CONDUIT	498.7	5.1195	0.0700
C2_2	J3	0F-2	CONDUIT	305.2	3.5281	0.0700
ExCulvert	0F-2	OF - 3	CONDUIT	77.3	2.9367	0.0170
ICD-E	Wet-Pond	OF-1	OUTLET			
ICD-W	Dry-Pond	0F-2	OUTLET			

Cross Section Summary ******

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
1 2 3 C2_1 C2_2	CIRCULAR CIRCULAR Section18 Section18 Section6	0.45 0.60 1.63 1.63 1.99	0.16 0.28 10.77 10.77 8.68	0.11 0.15 0.20 0.20 0.21	0.45 0.60 13.82 13.82 6.94	1 1 1 1	0.51 0.99 9.87 11.76 8.15
ExCulvert	CIRCULAR	0.63	0.31	0.16	0.63	1	0.92

***** Transect Summary *****

Transect Section18 Area:

Al'ea.					
	0.0021	0.0047	0.0075	0.0103	0.0133
	0.0165	0.0198	0.0232	0.0267	0.0304
	0.0342	0.0381	0.0422	0.0464	0.0511
	0.0572	0.0652	0.0751	0.0868	0.1004
	0.1159	0.1332	0.1520	0.1717	0.1923
	0.2139	0.2363	0.2597	0.2840	0.3091
	0.3352	0.3622	0.3901	0.4190	0.4487
	0.4793	0.5109	0.5434	0.5767	0.6110
	0.6462	0.6823	0.7194	0.7573	0.7961
	0.8359	0.8763	0.9171	0.9584	1.0000
Hrad:					
	0.1322	0.2706	0.3943	0.5064	0.6094
	0.7050	0.7944	0.8788	0.9590	1.0356
	1.1091	1.1800	1.2485	1.3210	1.4092
	1.4583	1.4527	1.4120	1.3526	1.2861
	1.2195	1.1566	1.1062	1.0681	1.0387
	1.0157	0.9977	0.9835	0.9724	0.9637
	0.9570	0.9520	0.9483	0.9458	0.9443
	0.9436	0.9437	0.9444	0.9456	0.9473
	0.9495	0.9520	0.9548	0.9580	0.9614
	0.9651	0.9731	0.9817	0.9907	1.0000

LCN Consulting Engineering Ltd.

Width:					
	0.0607	0.0639	0.0671	0.0703	0.0735
	0.0767	0.0799	0.0831	0.0863	0.0895
	0.0927	0.0959	0.0990	0.1039	0.1246
	0.1692	0.2137	0.2582	0.3027	0.3472
	0.3917	0.4362	0.4603	0.4820	0.5038
	0.5256	0.5474	0.5691	0.5909	0.6127
	0.6344	0.6562	0.6780	0.6997	0.7215
	0.7433	0.7650	0.7868	0.8086	0.8303
	0.8521	0.8739	0.8956	0.9174	0.9392
	0.9609	0.9708	0.9805	0.9903	1.0000
Transact	Section6				
	Sections				
Area:	0 0000	0.0047	0 0070	0.0000	0.0107
	0.0023	0.0047	0.0072	0.0099	0.0127
	0.0157	0.0188	0.0221	0.0255	0.0291
	0.0328	0.0387	0.0493	0.0618	0.0760
	0.0920	0.1097	0.1285	0.1479	0.1680
	0.1888	0.2102	0.2323	0.2551	0.2786
	0.3027	0.3276	0.3530	0.3792	0.4060
	0.4335	0.4614	0.4896	0.5179	0.5464
	0.5752	0.6041	0.6333	0.6627	0.6923
	0.7221	0.7522	0.7824	0.8128	0.8435
	0.8744	0.9055	0.9368	0.9683	1.0000
Hrad:					
	0.1677	0.3004	0.4104	0.5047	0.5878
	0.6627	0.7312	0.7949	0.8546	0.9113
	0.9653	0.9750	0.8867	0.8151	0.7601
	0.7176	0.6850	0.6662	0.6567	0.6532
	0.6536	0.6568	0.6620	0.6685	0.6760
	0.6843	0.6931	0.7023	0.7118	0.7215
	0.7317	0.7449	0.7585	0.7725	0.7866
	0.8010	0.8154	0.8299	0.8444	0.8588
	0.8733	0.8877	0.9021	0.9163	0.9305
	0.9446	0.9586	0.9725	0.9863	1.0000
Width:	0.9440	0.9566	0.9725	0.9803	1.0000
width:	0 0721	0 0776	0 0000	0.0067	0.0010
	0.0731	0.0776	0.0822	0.0867	0.0913
	0.0958	0.1004	0.1049	0.1095	0.1140
	0.1186	0.2711	0.3653	0.4201	0.4748
	0.5296	0.5788	0.5999	0.6211	0.6422
	0.6633	0.6845	0.7056	0.7267	0.7479
	0.7690	0.7901	0.8113	0.8324	0.8535
	0.8733	0.8800	0.8866	0.8933	0.9000
	0.9066	0.9133	0.9200	0.9266	0.9333
	0.9400	0.9467	0.9533	0.9600	0.9667
	0.9733	0.9800	0.9867	0.9933	1.0000

Rainfall File Summary

Station	First	Last	Recording		Periods	Periods
ID	Date	Date	Frequency		Missing	Malfunc.
STA.303109	3 01/01/1960	12/31/2014	60 min	482136	0	0

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

LCD Consulting Engineering Ltd.

Ending Date Antecedent Dry Days Report Time Step Wet Time Step Dry Time Step Routing Time Step Variable Time Step Maximum Trials Number of Threads Head Tolerance	0.0 01:00:00 00:15:00 01:00:00 60.00 sec YES 8 1	0:00 Depth			
Runoff Quantity Continuity		mm			
**************************************	1.189	7.311			
Initial Snow Cover Total Precipitation	0.000 3724.704	0.000 22903.400			
Evaporation Loss	1413.024	8688.759			
Infiltration Loss	1764.635	10850.831			
Surface Runoff	561.026	3449.780			
Snow Removed	0.000	0.000			
Final Snow Cover Final Storage	0.423 2.600	2.600 15.987			
Continuity Error (%)	-0.424	19.907			
*****	TSS010	TSS020	TSS050	TSS150	TSS500
Runoff Quality Continuity ************************************	kg	kg	kg	kg	kg
Initial Buildup	0.000	0.000	0.000	0.000	0.000
Surface Buildup	652371.539	255960.271	387941.702	678489.383	900394.339
Wet Deposition	0.000	0.000	0.000	0.000	0.000
Sweeping Removal	0.000	0.000	0.000	0.000	0.000
Infiltration Loss	10.873	4.910	52.230	79.812	23.277
BMP Removal	362479.244 253448.921	142211.097 99484.485	212773.889 154272.963	372638.929 268959.397	505793.711 354617.903
Remaining Buildup	36419.900	14254.188	20789.277	36729.509	39933.742
Continuity Error (%)	0.002	0.002	0.014	0.012	0.003
*****	Volume	Volume			
Flow Routing Continuity	hectare-m	10^6 ltr			

Dry Weather Inflow	0.000	0.000			
Wet Weather Inflow	559.857	5598.632			
Groundwater Inflow	0.000 0.000	0.000			
RDII Inflow External Inflow	0.000	0.000 0.000			
External Outflow	475.017	4750.218			
Flooding Loss	0.000	0.000			
Evaporation Loss	84.976	849.770			
Exfiltration Loss	0.000	0.000			
Initial Stored Volume Final Stored Volume	2.472 2.385	24.721 23.852			
Continuity Error (%)	-0.009	251052			
*****	TSS010	TSS020	TSS050	TSS150	TSS500
Quality Routing Continuity		kg	kg	kg	kg

Dry Weather Inflow	0.000	0.000	0.000	0.000	0.000
Wet Weather Inflow	251859.549	98860.600	153311.981	267283.113	352395.202
Groundwater Inflow RDII Inflow	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
External Inflow	0.000	0.000	0.000	0.000	0.000
External Outflow	52146.427	10190.968	4402.045	1068.372	200.458
Flooding Loss	0.000	0.000	0.000	0.000	0.000
Exfiltration Loss	0.000	0.000	0.000	0.000	0.000
Mass Reacted Initial Stored Mass	197297.530 0 000	88643.681 0.000	149000.164 0.000	266231.935 0.000	352158.170 0.000
Final Stored Mass	0.000 7.528	0.000	0.000	0.000	0.000
Continuity Error (%)	0.956	0.026	-0.059	-0.006	0.010

LGN Consulting Engineering Ltd.

Peak

3.32

0.36

0.18

0.46

0.13

0.12

0.39

0.64

1.27

4.11

0.24

***** Highest Flow Instability Indexes All links are stable. ***** Routing Time Step Summary ****** Minimum Time Step : 5.00 sec Average Time Step 55.27 sec : Average Time Step : Maximum Time Step : Percent in Steady State : 60.00 sec 0.00 Average Iterations per Step : 2.00 Percent Not Converging : 0.00 ***** Subcatchment Runoff Summary _____ ----Perv Total Total Total Total Total Imperv Total Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff mm mm mm Subcatchment mm mm mm mm 10^6 ltr CMS _____ 22903.40 0.00 11531.38 2599.95 12252.46 0.00 8913.02 2319.76 Com-MF 0.389 537.12 24.06 22903.40 0.00 377.89 22517.03 24.06 9.09 Ex-1 0.001 22903.40 0.00 761.37 22126.07 1165.78 54.59 Ex-2 54.59 3.16 0.002 230.62 22645.10 22903.40 0.00 295.41 41.18 41.18 Ex-3 5.57 0.002 0S-1 22903.40 0.00 578.15 22314.38 878.54 43.00 43.00 1.63 0.002 0S-2 22903.40 93.70 841.61 22068.06 1329.40 139.09 139.09 2.42 0.006 Pond-ER 22903.40 0.00 3401.46 13462.39 6322.50 66.07 6198.89 241.18 0.271 22903.40 2700.40 SF-1 0.00 16688.61 6385.10 0.00 3607.98 306.58 0.158 SF-2 22903.40 18.10 15447.04 3205.48 8283.15 0.00 4385.35 585.28 0.191 SF-3 22903.40 0.00 15643.12 3085.38 7996.98 0.00 4302.80 1969.72 0.188 Wetland-ER 22903.40 0.00 4104.44 12041.58 7403.97 60.41 6872.06 169.97 0.300 ***** LID Performance Summary

Subcatchment	LID Control	Total Inflow mm	Evap Loss mm	Infil Loss mm	Surface Outflow mm	Drain Outflow mm	Initial Storage mm	Final Storage mm	Continuity Error %
Com-MF SF-1 SF-2 SF-3	SandyLoam SandyLoam SandyLoam SandyLoam	43620.21 27794.63 31800.76 30948.76	27195.88 23003.15 24420.64 24173.65	15158.83 4701.39 7173.27 6604.36	1246.36 56.27 174.81 137.87	0.00 0.00 0.00 0.00	32.40 32.40 32.40 32.40 32.40	69.83 69.83 69.83 69.83	-0.04 -0.01 -0.02 -0.01

***** Subcatchment Washoff Summary

Subcatchment	TSS010 kg	TSS020 kg	TSS050 kg	TSS150 kg	TSS500 kg
Com-MF	111959.511	43854.501	 63458.492	111959.511	155814.012
COM-MF	111323.211	43034.301	03430.492	111323.211	100014.012

Ex-1	0.000	0.000	0.000	0.000	0.000
Ex-2	0.000	0.000	0.000	0.000	0.000
Ex-3	0.000	0.000	0.000	0.000	0.000
0S-1	22.181	10.017	106.546	162.811	47.484
0S-2	49.666	21.963	205.284	314.721	100.439
Pond-ER	832.763	415.187	6846.401	10373.697	2284.124
SF-1	0.000	0.000	0.000	0.000	0.000
SF-2	35570.784	13954.260	20582.679	36104.177	49582.982
SF-3	105085.863	41260.538	63385.391	110522.013	146936.786
Wetland-ER	0.000	0.000	0.000	0.000	0.000
System	253520.768	99516.465	154584.793	269436.929	354765.827

***** Node Depth Summary *****

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Max Occurrence days hr:min	Reported Max Depth Meters
J1	JUNCTION	0.00	0.25	1205.75	17322 19:00	0.25
J2	JUNCTION	0.00	0.34	1202.84	17322 19:02	0.33
J3	JUNCTION	0.03	0.88	1167.38	473 23:15	0.85
OF-1	JUNCTION	0.01	0.45	1192.45	17322 19:06	0.42
0F-2	JUNCTION	0.01	0.40	1156.14	473 23:18	0.39
0F-3	OUTFALL	0.01	0.39	1153.86	473 23:18	0.39
OF-W	OUTFALL	0.00	0.03	1197.03	17323 10:14	0.03
Dry-Pond	STORAGE	0.02	1.36	1171.36	17323 11:02	1.36
Ex-Wetland	STORAGE	0.13	0.33	1197.83	17323 10:14	0.33
Wet-Pond	STORAGE	3.50	4.97	1197.47	17322 21:24	4.96

Node Inflow Summary *****

		Maximum	Maximum			Lateral	Total	Flow
		Lateral	Total	Time o	of Max	Inflow	Inflow	Balance
		Inflow	Inflow	0ccui	rrence	Volume	Volume	Error
Node	Туре	CMS	CMS	days I	nr:min	10^6 ltr	10^6 ltr	Percent
J1	JUNCTION	0.360	0.360	17322	19:00	9.09	9.09	-0.021
J2	JUNCTION	0.000	0.360	17322	19:00	0	9.09	-0.737
J3	JUNCTION	0.457	1.018	17322	19:01	5.56	4.46e+03	0.011
OF-1	JUNCTION	0.182	0.725	17322	19:01	3.16	4.46e+03	-0.019
0F-2	JUNCTION	0.000	0.659	17322	19:15	0	4.75e+03	0.002
0F-3	OUTFALL	0.000	0.658	473	23:18	0	4.75e+03	0.000
OF-W	OUTFALL	0.000	0.005	17323	10:14	0	0.712	0.000
Dry-Pond	STORAGE	0.640	0.640	17322	19:00	306	306	-0.000
Ex-Wetland	STORAGE	0.239	0.239	17322	19:00	170	171	0.000
Wet-Pond	STORAGE	9.093	9.093	17322	19:00	5.11e+03	5.13e+03	-0.002

***** Node Surcharge Summary *****

No nodes were surcharged.

***** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary *****

	Average	Avg	Evap Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt Pcnt	Volume	Pcnt	Occurrence	Outflow
Storage Unit	1000 m3	Full	Loss Loss	1000 m3	Full	days hr:min	CMS

Dry-Pond	0.026	1	5	0 1.	902 88	17323 11:02	0.008	
Ex-Wetland	0.393	3	98	0 1.	611 11	17323 10:14	0.006	
Wet-Pond	23.328	36	13	0 51.		17322 21:24	0.249	
*****	****							
Outfall Loading Sur								
otal	Flow	Avg	Max	Total	Total	Total	Total	Total
5500	Freq	Flow	Flow	Volume	TSS010	TSS020	TSS050	TSS150
Outfall Node g	Pcnt	CMS	CMS	10^6 ltr	kg	kg	kg	kg
OF-3	31.13	0.020	0.658	4749.483	52145.442	10190.861	4402.307	1068.628
00.524 OF-W	0.41	0.000	0.005	0.712	0.000	0.000	0.000	0.000
.000	0.41		0.005	0.712	0.000			0.000
System	15.77	0.021	0.005	4750.196	52145.442	10190.861	4402.307	1068.628
00.524	±3•77	3.011	0.005	+, 50, 150	JZ1+J1+4Z	10100.001	++02.507	1000.020

Link Flow Summary

						/
		Maximum	Time of Max	Maximum Veloc	Max/ Full	Max/ Full
1 dayla	T	Flow	Occurrence			
Link	Туре	CMS	days hr:min	m/sec	Flow	Depth
4	CONDUTT		17222 10.11			
1	CONDUIT	0.005	17323 10:14		0.01	0.07
2	CONDUIT	0.360	17322 19:00) 2.92	0.36	0.49
3	CHANNEL	0.336	17322 19:02	0.82	0.03	0.24
C2_1	CHANNEL	0.653	17322 19:00	5 0.84	0.06	0.40
C2_2	CHANNEL	0.652	473 23:15	1.25	0.08	0.32
ExCulvert	CONDUIT	0.658	473 23:18	3.20	0.72	0.63
ICD-E	DUMMY	0.248	17322 21:24	ļ.		
ICD-W	DUMMY	0.008	17323 11:02	2		

```
*****
```

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
1	1.00	0.99	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
2	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.00
3	1.00	0.67	0.32	0.00	0.00	0.00	0.00	0.00	0.98	0.00
C2_1	1.00	0.63	0.04	0.00	0.33	0.00	0.00	0.00	0.99	0.00
C2_2	1.00	0.00	0.63	0.00	0.37	0.00	0.00	0.00	0.92	0.00
ExCulvert	1.00	0.00	0.00	0.00	0.63	0.37	0.00	0.00	0.02	0.00

***** Conduit Surcharge Summary ******

No conduits were surcharged.

TSS010 TSS020 TSS050 TSS150 TSS500

Link	kg	kg	kg	kg	kg
1	0.000	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000
C2_1	5.195e+04	1.017e+04	4466.554	1128.813	215.682
C2_2	5.213e+04	1.019e+04	4407.620	1073.751	201.845
ExCulvert	5.215e+04	1.019e+04	4402.307	1068.628	200.524
ICD-E	5.209e+04	1.018e+04	4395.770	1072.038	202.855
ICD-W	0.000	0.000	0.000	0.000	0.000

Analysis begun on: Wed Aug 26 09:39:40 2020 Analysis ended on: Wed Aug 26 09:42:37 2020 Total elapsed time: 00:02:57

LGN Consulting Engineering Ltd.

APPENDIX D

Data and Frequency Analysis Spreadsheet

DFASCC

Data and Frequency Analysis Spreadsheet for the City of Calgary Version 1.2

PROJECT INFORMATION SHEET

Project Name:	Ascension Development
Project Description:	Residential Development - Dry Pond
Location:	Rocky View County
Date:	2022-10-01
Designed by:	Luis Gerardo Narvaez
Company Name:	LGN Consulting Engineering Ltd.
Reviewed by:	-
	Clear Project Information Shee

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Hydrologic Data Series Input

NOTES

- This Spreadsheet is designed for a maximum of 1,000 entries (if more are required then formulas need to be adjusted) - Input dataset must be based on uniform time distribution (i.e.: daily, weekly, monthly, yearly) and must not include multiple values for any of the time steps (duplicates

highlighted in red)

- Input dataset must not have any missing cells of data (cells with "0" will be treated as having a value of 0)
 - Only positive values should be used

Please refer to Section 2.2 of the Frequency Analysis Procedure for Stormwater Design Manual for Data Series Characteristics detailed descriptions.

Index	Date	Value	Empirical Probability of Non-Exceedance
1	1960	230.3	0.101
2	1961	351.6	0.482
3	1962	265.7	0.156
4	1963	503.6	0.754
5	1964	483.4	0.717
6	1965	502.2	0.736
7	1966	573.1	0.862
8	1967	192.1	0.029
9	1968	433.2	0.591
10	1969	314.7	0.319
11	1970	734.7	0.953
12	1971	306	0.283
13	1972	535	0.772
14	1973	235.4	0.120
15	1974	335.9	0.428
16	1975	166.1	0.011
17 18	1976	379.3	0.518 0.246
18	1977	290.1	
20	1978	565.6	0.844
20	1979 1980	285.1 469.8	0.210
21	1980 1981	469.8 433.1	0.699 0.572
22	1981	227.9	0.083
23		329.3	0.391
24	1983 1984	422.4	0.391
25	1984	991.8	0.554
20	1986	538.2	0.790
28	1987	316.2	0.337
29	1988	643.4	0.899
30	1989	204.9	0.047
31	1990	321.7	0.373
32	1991	320	0.355
33	1992	541.5	0.826
34	1993	448.7	0.645
35	1994	280.3	0.192
36	1995	271.7	0.174
37	1996	306.7	0.301
38	1997	653.9	0.917
39	1998	594.2	0.880
40	1999	465.5	0.681
41	2000	333.8	0.409
42	2001	373.4	0.500
43	2002	206.2	0.065
44	2003	246.5	0.138
45 46	2004	436.7 659	0.609 0.935
46	2005 2006	341.2	0.935
47	2008	1014	0.989
48	2007	293.8	0.264
50	2009	289.9	0.228
51	2010	421.9	0.536
52	2011	438.9	0.627
53	2012	456.4	0.663
54	2013	539.6	0.808
55	2014	340.8	0.446

Clear	All	Input	Data
-------	-----	-------	------

Basic Characteristics				
Number of Data Entries	55			
Maximum Value	1010			
Minimum Value	166			
Average (Mean) Value	416			
Median Value	373			
Standard Deviation	177			
Variance	31200			
Variation coefficient (Cv)	0.425			
Skewness coefficient (Cs)	1.41			
Kurtosis	5.21			

*Values assumed to be sample not full population

Empirical Probability	of Non-Exceedance (Plotting Positi	on) based on:
F(x	(k)) = (k-a)/ (n-2a+1), 0 <=a<=0.5	
a =	0.4	Cunnane (1978)
k=	rank of the even in question (in asce	nding order)
n=	55	

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Test for Trend:		Choose Significance Level (alpha): 5%
I) Spearman Rank Order Correlation Coefficient		
$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}.$		H ₀ = Data has no trend
Spearman Correlation Coefficient:	0.101	
		based on z No Significant Trend at 0.05 Significance Level
When there are no ties in rankings: $ ho = 1 - rac{6\sum d_i^2}{n(n^2-1)}.$		based on t No Significant Trend at 0.05 Significance Level
pearman Correlation Coefficient:	0.101	T (Adjustment for ties) =
-distribution value	0.742	Standard Normal (z)= 0.
Degrees of freedom	53	
Tests for Jump: 2) Mann-Whitney Test for jump (a.k.a. Mann-Whitne	y U test)	
ndex number of subsample divide	22	
		H ₀ = Independent samples drawn from the same population (No Jump)
$U_1 = R_1 - \frac{n_1(n_1 + 1)}{2}$		
Number of values in sample 1 n ₁ =	22	No Jump at 0.05 Significance Level
Number of values in sample 2 n ₂ =	33	
Fotal of Ranking in sample 1 R ₁ =	583	
Fotal of Ranking in sample 2 R ₂ =		
J ₁ =	330	
$U_1 + U_2 = n_1 n_2.$		
J ₂ =	396	
J (Minimum of U_1 and U_2)=	330	
Standard Normal (z)=	-0.567	
3) Wald-Wolfowitz Test (The runs test)		
$\mu = \frac{2 N_+ N}{N} + 1,$	$\sigma^2 - \frac{2N_+N}{2}$	$\frac{(2 N_{+} N_{-} - N)}{\sqrt{2} (N - 1)} = \frac{(\mu - 1)(\mu - 2)}{N - 1}.$
Number of data greater than median N_{\star} =	27	H _o = Data represent sample of single independently distributed randon
Number of data less than median N_{c} =	27	variable (No Jump)
Fotal number of runs =	30	
Mean =	28.0	No Jump at 0.05 Significance Level
/ariance =	13.2	
Standard Normal (z)=	0.4	
	•	
NOTES		

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

	Hor	nogeneity	
		Choose Significance Level (alpha):	5%
Mann-Whitney Test for homogeneity (a.k.a	. Mann-Whitney U test)		
Index number of subsample divide	28		
n (n)	+ 1)	H ₀ = There is homogeneity between samples w	ith respect to probability of
$U_1 = R_1 - \frac{n_1(n_1)}{2}$	+1)	random drawing of a larger observation	
2			
		Sample is Homogeneous at 0.05	Significance Level
Number of values in sample 1 $n_1 =$	28		
Number of values in sample 2 $n_2=$	27		
Total of Ranking in sample 1 R ₁ =	758		
Total of Ranking in sample 1 R ₂ =			
U ₁ =	352		
$U_1 + U_2 = n_1$	n_2 .		
J ₂ =	404		
U (Minimum of U_1 and U_2)=	352		
Standard Normal (z)=	-0.438		
Terry Test			
ndex number of subsample divide	28	H_0 = There is homogeneity between samples w	ith respect to probability of
index number of subsample divide	28	random drawing of a larger observation	in respect to probability of
Fotal sample size	55		
Subsample 1 (m)	28		
Subsample 2 (n)	27		
		Sample is Homogeneous at 0.05	Significance Level
Standard Deviation =	3.654		
Sum of ranks in first subsample c =	2.269		
	0.621		

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

	li	ndependence	2	
			Choose Significance Level (alpha):	5%
1) Spearman Rank Order Correlation Coefficie	nt			
$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{x})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i)}}$	$\overline{(y)}$ $-\overline{(y)^2}$		H ₀ = Data is independent	
Spearman Correlation Coefficient:	-0.06		Data is independent at	0.05 Significance Level
When there are no ties in rankings:				
$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$	·.			
Spearman Correlation Coefficient:	-0.06			
t-distribution value	-0.47			
Degrees of freedom	53			
2) Wald-Wolfowitz Test				
$R = \sum_{i=1}^{N-1} x_i x_{i+1} + x_1 x_N$				
Statistic R	9410000			
Mean	9470000		H ₀ = Data is independent	
Variance	4730000000			
			Data is independent at	0.05 Significance Level
Standard Normal (z)=	-0.3			
2) Anderson Test				
$r_{1} = \left[\sum_{i=1}^{N-1} x_{i} x_{i+1} + x_{1} x_{N} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right]$	$\binom{N}{N} = \binom{N}{\sum_{i=1}^{N} x_i^2} = \binom{N}{2}$	$\sum_{i=1}^{N} x_i \Big)^2 \Big/ N \Big]$		
Statistic r	-0.053			
Mean	-0.019		H ₀ = Data is independent	
Variance	0.018			
			Data is independent at	0.05 Significance Level
Standard Normal (z)=	-0.3			

Company Name: LGN Consulting Engineering Ltd.

		Outliers
		Significance Level (alpha): 10%
Grubbs and Beck test for Outliers	5	
1) High Outliers		Assumption: logarithms of sample are normally distributed
X _h = exp (xmean+K _n S)		
	9835N^1/2+0.491436N^3/4-0.037911N	
K(n) = -0.9043+3.345*SQRT(log(n)		for 5 <n<150< td=""></n<150<>
$R(II) = -0.5043+3.343^{-3}Q(II)(I0g(II))$))-0.404010g(11)	
Sample Size (n) =	55	
K(n) =	2.80	
K(n) for 5 <n<150 =<="" td=""><td>2.80</td><td></td></n<150>	2.80	
X _h =	1160	< Any value higher than X _h is considered a high outlier
Maximum Value	1010	
High Outliers	No High Outliers Present	
2) Low Outliers		
X _h = exp (xmean-K _n S)		
K(n) =-3.62201+6.2844N^1/4-2.49	2025NIA4 /2 . 0 404 42CNIA2 /4 0 027044N	
K(n) = -0.9043+3.345*SQRT(log(n)		for 5 <n<150< td=""></n<150<>
))-0.4046log(n)	for 5 <n<150< td=""></n<150<>
Sample Size (n) =))-0.4046log(n) 55	for 5 <n<150< td=""></n<150<>
Sample Size (n) = K(n) =))-0.4046log(n) 55 2.80	for 5 <n<150< td=""></n<150<>
Sample Size (n) = K(n) = K(n) for 5 <n<150 =<="" td=""><td>))-0.4046log(n) 55 2.80 2.80</td><td></td></n<150>))-0.4046log(n) 55 2.80 2.80	
Sample Size (n) = K(n) = K(n) for 5 <n<150 =<br="">X_h=</n<150>))-0.4046log(n) 55 2.80 2.80 127	for 5 <n<150< td=""></n<150<>
K(n) = -0.9043+3.345*SQRT(log(n)) Sample Size (n) = K(n) = K(n) for 5 <n<150 =<br="">$X_h =$ Minimum Value Low Outliers</n<150>))-0.4046log(n) 55 2.80 2.80	

Dependent Dataset	
	Choose Significance Level (alpha): 59
utocorrelation coefficient	
$R_{c}(\tau) = \frac{\sum_{i=1}^{N- \tau } X_{i}Y_{i+\tau} - \frac{1}{N- \tau } \left(\sum_{i=1}^{N- \tau } X_{i}\right) \left(\sum_{i=\tau+1}^{N} Y_{i}\right)}{\left[\sum_{i=1}^{N- \tau } X_{i}^{2} - \frac{1}{N- \tau } \left(\sum_{i=1}^{N- \tau } X_{i}\right)^{2}\right]^{0.5} \left[\sum_{i=1+ \tau }^{N} Y_{i}^{2} - \frac{1}{N- \tau } \left(\sum_{i=1+ \tau }^{N} Y_{i}\right)^{2}\right]^{0.5}}$	5
Ine Time Period Offset utocorrelation coefficient offset by one time period r(1) = -0.062	H ₀ - The data is not serially correlated No Serial Correlation at 0.05 Significance Level
distribution values for one time period offset t = -0.454	
wo Time Periods Offset	
sutocorrelation coefficient offset by two time periods r(2) = 0.059	No Serial Correlation at 0.05 Significance Level
distribution values for two time periods offset t = 0.433	
nstructions: Compare the results of the autocorrelation tests for one time period offset and for the two time period. The finding for the one period time step is serially correlated, and the finding for the two time step inlikely to produce an independent data set suitable for frequency analysis. In this case, other methor The finding for the one period time step is serially correlated, and the finding for the two time step ransposed to produce an independent data set suitable for frequency analysis.	is also serially correlated. In this case, transposing the data sods, such as the Monte Carlo simulation are necessary.

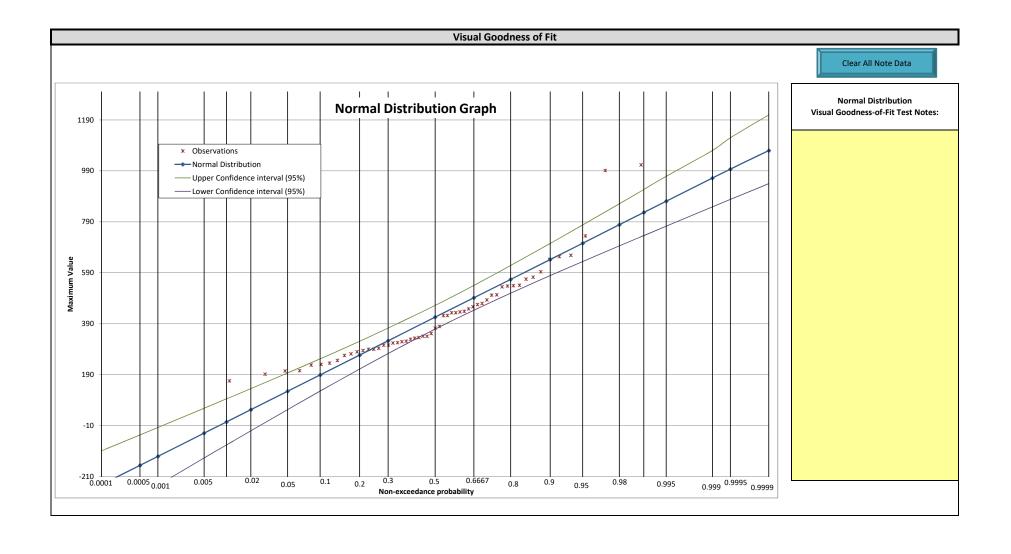
		Fr	equency Analysis Re	sults Input		
NOTES					Clear A	ll Input Data
	at designed to accept	the results of	10 specific Frequency Ana	lysis outputs		
			output table from Hyfran		I nasted special as	text in the top
			as distribution results and			
			d of estimation per distribution		parameters in spe	cilleu al eas.
			Analysis Procedures for S		Manual for guida	ance when
choosing method		ne rrequency	Analysis i locedules for 5	torinwater Design	Wallaa ioi gulua	ince when
0		he Frequency	Analysis Procedures for S	ormwater Design	Manual for a des	cription of each
	and its limitations	ine inequeiney		ioninater Besign	indiada iora aco	
		sis output can	be copied into the last inp	ut box. This outpu	t will be displayed	in the visual
			s of fit tests will be perfor			
J	-,	0				
Normal (Gaussia	n) type of distributio	nc.				
Normal Distri						
			ow (A1E)			
	tribution Hyfran Out	put in cell Bel	UW (ALS)			
Ascension Dry Po	mu					
Results of the fitt	ing					
ites of the fill	ō					
Normal (Maximu	m Likelihood)					
	Lineinoouj					
Number of obser	vations 55					
Parameters						
	445 570000					
mu	415.570909					
sigma	415.570909 176.695895					
sigma Quantiles]				
sigma Quantiles q = F(X) : non-exc	176.695895]				
sigma Quantiles q = F(X) : non-exc	176.695895					
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T	176.695895 ceedance probability	XT	Standard deviation	Confidence in		
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000	q 0.9999	XT 1.07E+03	6.76E+01	9.40E+02	1.21E+03	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000	176.695895 eedance probability 9 0.9999 0.9995	XT 1.07E+03 9.97E+02	6.76E+01 6.08E+01	9.40E+02 8.78E+02	1.21E+03 1.12E+03	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000	q 0.9999 0.9999 0.9999	XT 1.07E+03 9.97E+02 9.62E+02	6.76E+01 6.08E+01 5.77E+01	9.40E+02 8.78E+02 8.49E+02	1.21E+03 1.12E+03 1.07E+03	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 200	176.695895 :eedance probability 0.9999 0.9995 0.999 0.995 0.995	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01	9.40E+02 8.78E+02 8.49E+02 7.73E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000	q 0.9999 0.9995 0.995 0.995 0.995 0.995 0.99	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 200 1000 50	q 0.9999 0.9995 0.995 0.995 0.995 0.995 0.99 0.99	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200	176.695895 ceedance probability 0.9999 0.9995 0.9995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 200 200 100 50 20 10	176.695895 ceedance probability 0.9999 0.9995 0.9995 0.999 0.999 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.98 0.95 0.9	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 200 100 50 20 10 50 50 50 50 50	176.695895 ceedance probability 0.9999 0.9995 0.9995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.98 0.95 0.9 0.8	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200 100 50 20 10 5 3	176.695895 :eedance probability 0.9999 0.9999 0.9995 0.999 0.999 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.95 0.9 0.8 0.6667	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200 100 50 20 10 53 3 2	176.695895 :eedance probability 0.9999 0.9995 0.999 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 4.92E+02 4.16E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200 100 50 20 100 53 3 2 2 1.4286	176.695895 ceedance probability 0.9999 0.9995 0.999 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4	9.40E+02 8.78E+02 8.49E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200 100 50 20 100 55 3 2 1.4286 1.25	q 0.9999 0.9995 0.999 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.9 0.95 0.9 0.95 0.9 0.8 0.6667 0.3 0.2	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8	9.40E+02 8.78E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02 3.21E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200 100 50 20 100 55 3 2 1.4286 1.4286 1.25 1.1111	q 0.9999 0.9995 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.9 0.95 0.9 0.88 0.6667 0.3 0.2 0.1	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02 1.89E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8 32.3	9.40E+02 8.78E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02 1.26E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 3.73E+02 3.21E+02 2.52E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 50 200 100 50 20 100 55 3 20 1.4286 1.25 1.1111 1.0526	q 0.9999 0.9999 0.9995 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.3 0.2 0.1 0.05	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02 1.89E+02 1.25E+02	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8 32.3 33.8 25.4 36.7 32.3	9.40E+02 8.78E+02 8.49E+02 7.73E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02 1.26E+02 5.28E+01	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02 3.21E+02 2.52E+02 1.97E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 200 100 50 20 100 50 20 100 50 20 10 53 20 10 53 20 10 53 20 10 53 20 10 55 32 21 1.4286 1.25 1.1111 1.0526 1.0204	176.695895 ceedance probability 0.9999 0.9995 0.999 0.999 0.999 0.995 0.99 0.99 0.99 0.99 0.99 0.93 0.94 0.95 0.95 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 6.42E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02 1.89E+02 1.25E+02 5.26E+01	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8 32.3 36.7 32.3 36.7 32.3 36.7 4.23E+01	9.40E+02 8.78E+02 8.78E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02 1.26E+02 5.28E+01 -3.03E+01	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02 3.21E+02 2.52E+02 1.97E+02 1.35E+02	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 200 1000 50 200 100 50 20 100 53 20 10 53 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	176.695895 ceedance probability 0.9999 0.9995 0.999 0.999 0.999 0.999 0.995 0.99 0.995 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02 1.89E+02 1.25E+02 5.26E+01 4.44E+00	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8 32.3 36.7 4.23E+01 36.7 4.23E+01 4.62E+01	9.40E+02 8.78E+02 8.78E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02 1.26E+02 5.28E+01 -3.03E+01 -8.61E+01	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02 3.21E+02 2.52E+02 1.97E+02 1.35E+02 9.50E+01	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 200 100 50 20 100 50 20 10 55 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	176.695895 ceedance probability 0.9999 0.9995 0.999 0.999 0.995 0.99 0.99 0.99 0.99 0.99 0.99 0.93 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.01 0.005	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02 1.89E+02 1.25E+02 5.26E+01 4.44E+00 -3.96E+01	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8 32.3 36.7 4.92E+01 4.62E+01 4.23E+01 4.62E+01 4.62E+01 4.99E+01	9.40E+02 8.78E+02 8.78E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02 1.26E+02 5.28E+01 -3.03E+01 -8.61E+01 -1.37E+02	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.78E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02 3.21E+02 2.52E+02 1.97E+02 1.35E+02 9.50E+01 5.81E+01	
sigma Quantiles q = F(X) : non-exc T = 1/(1-q) T 10000 2000 1000 2000 1000 200 1000 50 200 100 50 20 100 53 20 10 53 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	176.695895 ceedance probability 0.9999 0.9995 0.999 0.999 0.999 0.999 0.995 0.99 0.995 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01	XT 1.07E+03 9.97E+02 9.62E+02 8.71E+02 8.27E+02 7.79E+02 7.06E+02 6.42E+02 5.64E+02 4.92E+02 4.16E+02 3.23E+02 2.67E+02 1.89E+02 1.25E+02 5.26E+01 4.44E+00	6.76E+01 6.08E+01 5.77E+01 4.99E+01 4.62E+01 4.23E+01 36.7 32.3 27.8 24.9 23.8 25.4 27.8 32.3 36.7 4.23E+01 36.7 4.23E+01 4.62E+01	9.40E+02 8.78E+02 8.78E+02 7.73E+02 7.36E+02 6.96E+02 6.34E+02 5.79E+02 5.10E+02 4.43E+02 3.69E+02 2.73E+02 2.12E+02 1.26E+02 5.28E+01 -3.03E+01 -8.61E+01	1.21E+03 1.12E+03 1.07E+03 9.69E+02 9.17E+02 8.61E+02 7.78E+02 7.05E+02 6.19E+02 5.40E+02 4.62E+02 3.73E+02 3.21E+02 2.52E+02 1.97E+02 1.35E+02 9.50E+01	

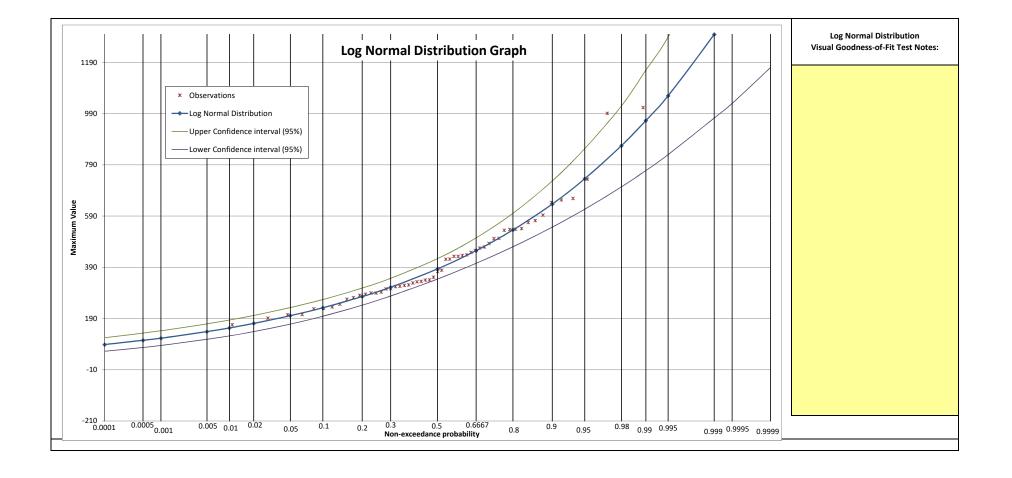
Lognormal Di	stribution:					
Paste Lognormal	Distribution Outp	ut from Hyfran i	n Cell Below (A57)			
Ascension Dry Po	nd					
Results of the fitt	ing					
Lognormal (Maxii	mum Likelihood)					
Number of obser	vations 55					
Parameters						
mu	5.950989					
sigma	0.394951					
q = F(X) : non-exc T = 1/(1-q)	eedance probabili	ty				
т	q	XT	Standard deviation	Confidence int	terval (95%)	
-	q 0.9999	XT 1.67E+03	Standard deviation 2.52E+02	Confidence int 1.17E+03	terval (95%) 2.16E+03	
10000						
10000 2000	0.9999	1.67E+03	2.52E+02	1.17E+03	2.16E+03	
10000 2000 1000	0.9999 0.9995	1.67E+03 1.41E+03	2.52E+02 1.92E+02	1.17E+03 1.03E+03	2.16E+03 1.78E+03	
10000 2000 1000 200	0.9999 0.9995 0.999	1.67E+03 1.41E+03 1.30E+03	2.52E+02 1.92E+02 1.68E+02	1.17E+03 1.03E+03 9.73E+02	2.16E+03 1.78E+03 1.63E+03	
10000 2000 1000 200 100 50	0.9999 0.9995 0.999 0.999	1.67E+03 1.41E+03 1.30E+03 1.06E+03	2.52E+02 1.92E+02 1.68E+02 1.18E+02	1.17E+03 1.03E+03 9.73E+02 8.30E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03	
10000 2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03	
10000 2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.99 0.98 0.98 0.95 0.9	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03	
10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02 7.36E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02	
10000 2000 1000 200 100 50 20 10 5 5 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.6667	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.06E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02	
10000 2000 1000 200 100 50 20 10 5 5 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.06E+02 3.44E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	1.67E+03 1.41E+03 1.30E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.06E+02 3.44E+02 2.78E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.25	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.06E+02 3.44E+02 2.78E+02 2.42E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 3.09E+02	
10000 2000 1000 200 100 50 20 10 55 3 2 2 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	1.67E+03 1.41E+03 1.30E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.06E+02 3.44E+02 2.78E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02	
10000 2000 1000 200 100 50 20 10 55 3 2 2 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	1.67E+03 1.41E+03 1.30E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02 2.76E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.06E+02 3.44E+02 2.78E+02 2.42E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 3.09E+02	
10000 2000 1000 200 100 50 20 10 55 3 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	1.67E+03 1.41E+03 1.30E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02 2.76E+02 2.32E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1 16.7	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.70E+02 3.44E+02 2.78E+02 2.42E+02 1.99E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 3.09E+02 2.64E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	1.67E+03 1.41E+03 1.30E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 3.84E+02 3.12E+02 2.76E+02 2.32E+02 2.01E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1 16.7 16.5	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.70E+02 3.44E+02 2.78E+02 2.42E+02 1.99E+02 1.68E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 3.09E+02 2.64E+02 2.33E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	1.67E+03 1.41E+03 1.30E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02 2.76E+02 2.32E+02 2.01E+02 1.71E+02	2.52E+02 1.92E+02 1.68E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1 16.7 16.5 16.1	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.70E+02 3.44E+02 2.78E+02 2.42E+02 1.99E+02 1.68E+02 1.39E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 3.09E+02 2.64E+02 2.33E+02 2.02E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.995 0.999 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02 2.76E+02 2.32E+02 2.01E+02 1.71E+02 1.53E+02	2.52E+02 1.92E+02 1.68E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1 16.7 16.5 16.1 15.8	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.70E+02 3.44E+02 2.78E+02 2.42E+02 1.99E+02 1.68E+02 1.39E+02 1.22E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 2.64E+02 2.33E+02 2.02E+02 1.84E+02	
T 10000 2000 1000 200 100 50 20 10 5 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001 1.0005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.67E+03 1.41E+03 1.30E+03 1.06E+03 9.63E+02 8.65E+02 7.36E+02 6.37E+02 5.36E+02 4.55E+02 3.84E+02 3.12E+02 2.76E+02 2.32E+02 2.01E+02 1.71E+02 1.53E+02 1.39E+02	2.52E+02 1.92E+02 1.68E+02 1.18E+02 9.94E+01 8.17E+01 6.04E+01 4.60E+01 3.33E+01 25.4 20.5 17.8 17.1 16.7 16.5 16.1 15.8 15.5	1.17E+03 1.03E+03 9.73E+02 8.30E+02 7.68E+02 7.04E+02 6.17E+02 5.47E+02 4.70E+02 4.70E+02 3.44E+02 2.78E+02 1.99E+02 1.68E+02 1.39E+02 1.22E+02 1.09E+02	2.16E+03 1.78E+03 1.63E+03 1.29E+03 1.16E+03 1.02E+03 8.54E+02 7.27E+02 6.01E+02 5.05E+02 4.24E+02 3.47E+02 3.09E+02 2.64E+02 2.33E+02 2.02E+02 1.84E+02	

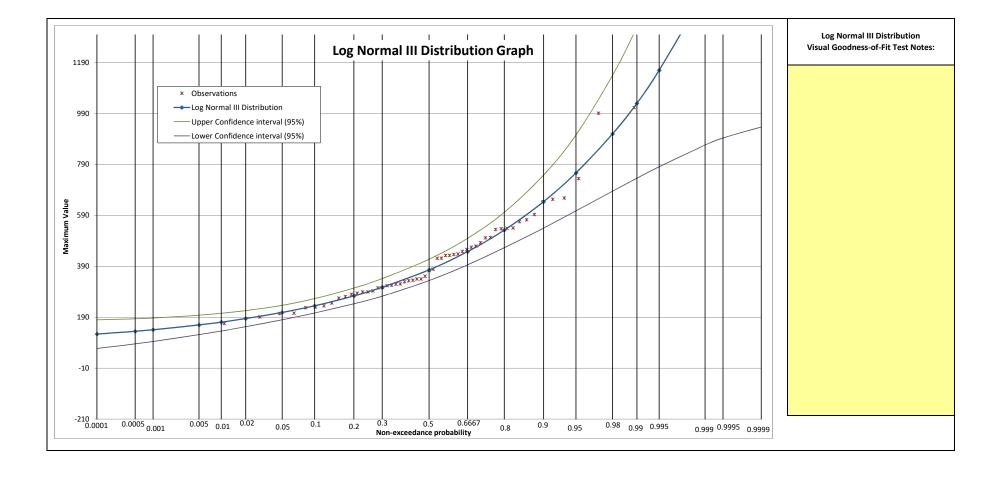
LUGHUITHAI III	Distribution					
		put from Hyfrai	n in Cell Below (A99)			
Ascension Dry Po	nd	· ·				
Results of the fitt	ing					
3-parameter logn	ormal (Maximum I	ikelihood)				
Number of obser	vations 55					
Parameters						
m	76.842353					
mu	5.702429					
sigma	0.498168					
Quantiles q = F(X) : non-exc T = 1/(1-q)	eedance probabilit					
Т	q	ХТ	Standard deviation	Confidence in		
10000	0.9999	1.99E+03	5.36E+02	9.37E+02	3.04E+03	
2000	0.9995	1.62E+03	3.71E+02	8.94E+02	2.35E+03	
1000	0.999	1.47E+03	3.10E+02	8.66E+02	2.08E+03	
				0.002.02	2.002.00	
200	0.995	1.16E+03	1.92E+02	7.81E+02	1.54E+03	
100	0.995 0.99		1.92E+02 1.51E+02	7.81E+02 7.36E+02		
100 50	0.99 0.98	1.16E+03		7.81E+02	1.54E+03	
100 50 20	0.99 0.98 0.95	1.16E+03 1.03E+03	1.51E+02 1.15E+02 7.61E+01	7.81E+02 7.36E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02	
100 50 20 10	0.99 0.98 0.95 0.9	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02	
100 50 20 10 5	0.99 0.98 0.95 0.9 0.9 0.8	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02	
100 50 20 10 5 3	0.99 0.98 0.95 0.9 0.8 0.8 0.6667	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02	
100 50 20 10 5 3 2	0.99 0.98 0.95 0.9 0.8 0.6667 0.5	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02	
100 50 20 10 5 3 2 2 1.4286	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02	
100 50 20 10 5 3 2 1.4286 1.25	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 2.07E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02 2.09E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4 14.5	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 2.07E+02 1.80E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02 2.37E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02 2.09E+02 1.85E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4 14.5 16.1	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 2.07E+02 1.80E+02 1.53E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02 2.37E+02 2.16E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02 1.85E+02 1.71E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4 14.5 16.1 17.7	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 2.07E+02 1.80E+02 1.53E+02 1.36E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02 2.37E+02 2.16E+02 2.06E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.01 0.005	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02 1.85E+02 1.71E+02 1.60E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4 14.5 16.1 17.7 19.5	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 2.07E+02 1.80E+02 1.53E+02 1.36E+02 1.22E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02 2.16E+02 2.06E+02 1.16E+02 1.98E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.005 0.001	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02 2.09E+02 1.85E+02 1.71E+02 1.60E+02 1.41E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4 14.5 16.1 17.7 19.5 2.36E+01	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 1.80E+02 1.53E+02 1.36E+02 1.22E+02 9.48E+01	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02 2.16E+02 2.06E+02 1.98E+02 1.87E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.01 0.005	1.16E+03 1.03E+03 9.10E+02 7.57E+02 6.44E+02 5.32E+02 4.48E+02 3.76E+02 3.08E+02 2.74E+02 2.35E+02 1.85E+02 1.71E+02 1.60E+02	1.51E+02 1.15E+02 7.61E+01 5.29E+01 35.6 26.7 21.4 17.4 15.7 14.4 14.5 16.1 17.7 19.5	7.81E+02 7.36E+02 6.85E+02 6.08E+02 5.40E+02 4.63E+02 3.96E+02 3.34E+02 2.73E+02 2.43E+02 2.07E+02 1.80E+02 1.53E+02 1.36E+02 1.22E+02	1.54E+03 1.33E+03 1.14E+03 9.06E+02 7.48E+02 6.02E+02 5.00E+02 4.18E+02 3.42E+02 3.05E+02 2.63E+02 2.16E+02 2.06E+02 1.16E+02 1.98E+02	

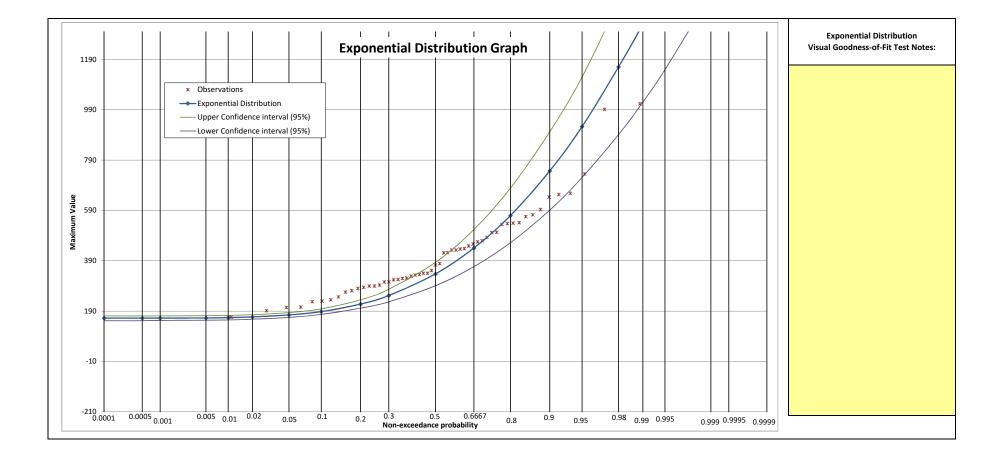
Exponential and	Pearson type of dis	stributions:				
Exponential	Distribution					
Paste Exponentia	l Distribution Outpu	ut from Hyfran	in Cell Below (A142)			
Ascension Dry Po	nd	· · ·				
Results of the fitt	ing					
Exponential (Max	imum Likelihood)					
Number of observ	vations 55					
Parameters						
alpha	254.090741					
m	161.480168					
	101.400108					
Quantiles						
	eedance probability	v.				
T = 1/(1-q)	ecounce probability	,				
-/(- 4/						
-		VT	Standard deviation	Confidence in	terval (95%)	
	a	XT				
	q 0.9999				```````````````````	
T 10000 2000	0.9999	2.50E+03	3.18E+02	1.88E+03	3.12E+03	
10000 2000	0.9999 0.9995	2.50E+03 2.09E+03	3.18E+02 2.62E+02	1.88E+03 1.58E+03	3.12E+03 2.61E+03	
10000 2000 1000	0.9999 0.9995 0.999	2.50E+03	3.18E+02	1.88E+03 1.58E+03 1.45E+03	3.12E+03	
	0.9999 0.9995	2.50E+03 2.09E+03 1.92E+03 1.51E+03	3.18E+02 2.62E+02 2.38E+02 1.83E+02	1.88E+03 1.58E+03	3.12E+03 2.61E+03 2.38E+03	
10000 2000 1000 200 100	0.9999 0.9995 0.999 0.999 0.995	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03	3.18E+02 2.62E+02 2.38E+02	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03	
10000 2000 1000 200	0.9999 0.9995 0.999 0.995 0.995 0.99 0.98	2.50E+03 2.09E+03 1.92E+03 1.51E+03	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02	1.88E+03 1.58E+03 1.45E+03 1.15E+03	3.12E+03 2.61E+03 2.38E+03 1.87E+03	
10000 2000 1000 200 100 50	0.9999 0.9995 0.999 0.999 0.995 0.99	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03	
10000 2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.995 0.99 0.98 0.95	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03	
10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.995 0.99 0.98 0.95 0.9	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02	
10000 2000 1000 200 100 50 20 10 5	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9 0.9 0.9	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02	
10000 2000 1000 200 100 50 20 10 5 5 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.8 0.6667	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02	
10000 2000 1000 200 100 50 20 10 5 3 3 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2	0.9999 0.9995 0.995 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02 2.27E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02 2.18E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02 2.27E+02 2.02E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02 2.35E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.2 0.1	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02 2.18E+02 1.88E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46 5.52	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02 2.27E+02 2.02E+02 1.77E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02 2.35E+02 1.99E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02 2.18E+02 1.88E+02 1.75E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46 5.52 4.76	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02 2.27E+02 2.02E+02 1.77E+02 1.65E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02 1.99E+02 1.84E+02	
10000 2000 1000 200 100 50 20 10 55 3 2 2 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02 2.18E+02 1.88E+02 1.75E+02 1.67E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46 5.52 4.76 4.62	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02 2.27E+02 2.02E+02 1.77E+02 1.65E+02 1.58E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02 1.99E+02 1.84E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.2 0.1 0.05 0.2 0.1	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02 2.18E+02 1.88E+02 1.67E+02 1.64E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46 5.52 4.76 4.62 4.63	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 3.67E+02 2.91E+02 2.27E+02 2.02E+02 1.77E+02 1.58E+02 1.58E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02 1.99E+02 1.84E+02 1.76E+02 1.77E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02 0.01 0.02 0.01 0.005	2.50E+03 2.09E+03 1.92E+03 1.51E+03 1.33E+03 1.16E+03 9.23E+02 7.47E+02 5.70E+02 4.41E+02 3.38E+02 2.52E+02 2.18E+02 1.88E+02 1.67E+02 1.64E+02 1.63E+02	3.18E+02 2.62E+02 2.38E+02 1.83E+02 1.59E+02 1.35E+02 1.03E+02 7.91E+01 5.52E+01 3.76E+01 23.8 12.6 8.46 5.52 4.76 4.62 4.63 4.64	1.88E+03 1.58E+03 1.45E+03 1.15E+03 1.02E+03 8.91E+02 7.21E+02 5.91E+02 4.62E+02 3.67E+02 2.91E+02 2.27E+02 2.02E+02 1.77E+02 1.65E+02 1.58E+02 1.55E+02 1.54E+02	3.12E+03 2.61E+03 2.38E+03 1.87E+03 1.64E+03 1.42E+03 1.12E+03 9.02E+02 6.79E+02 5.14E+02 3.84E+02 2.77E+02 1.99E+02 1.84E+02 1.76E+02 1.77E+02	

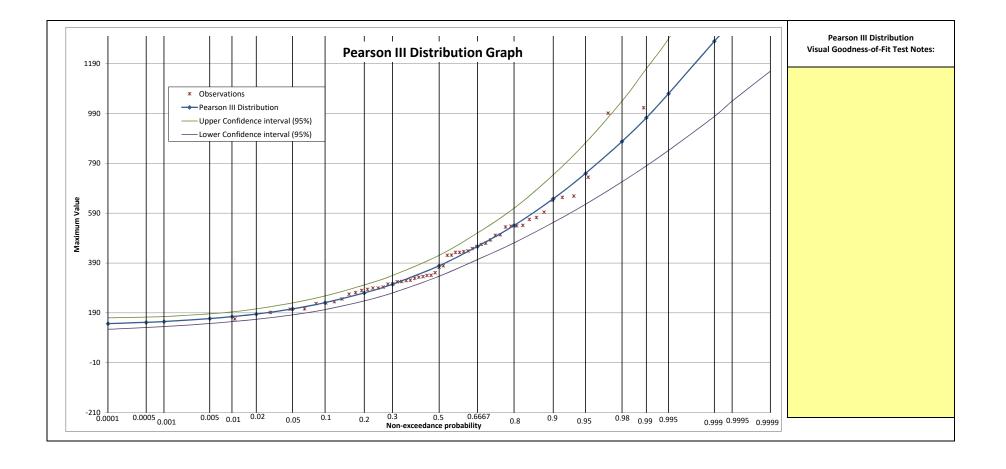
Pearson Type						
Paste Pearson III I	Distribution Output	from Hyfran ir	n Cell Below (A184)			
Ascension Dry Po	nd	·				
Results of the fitti	ng					
Pearson type III (N	Maximum Likelihoo	d)				
Number of observ	vations 55					
Parameters						
alpha	0.008894					
lambda	2.388004					
m	147.06549					
T = 1/(1-q)	eedance probability	/				
		VT	Current and the failer			
T	q	XT	Standard deviation	Confidence in		
10000	0.9999	1.57E+03	2.06E+02	1.16E+03	1.97E+03	
10000 2000	0.9999 0.9995	1.57E+03 1.36E+03	2.06E+02 1.68E+02	1.16E+03 1.04E+03	1.97E+03 1.69E+03	
10000 2000 1000	0.9999 0.9995 0.999	1.57E+03 1.36E+03 1.28E+03	2.06E+02 1.68E+02 1.51E+02	1.16E+03 1.04E+03 9.78E+02	1.97E+03 1.69E+03 1.57E+03	
10000 2000 1000 200	0.9999 0.9995 0.999 0.999 0.995	1.57E+03 1.36E+03 1.28E+03 1.07E+03	2.06E+02 1.68E+02 1.51E+02 1.14E+02	1.16E+03 1.04E+03 9.78E+02 8.42E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03	
10000 2000 1000 200 100	0.9999 0.9995 0.999 0.995 0.995 0.995	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03	
10000 2000 1000 200 100 50	0.9999 0.9995 0.999 0.995 0.995 0.99 0.99	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03	
10000 2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.99 0.99 0.99	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02	
10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02	
10000 2000 2000 200 100 50 20 10 50 20 55	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9 0.9 0.9	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02	
10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.6667	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9 0.9 0.9	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.79E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02	
10000 2000 1000 200 100 50 20 10 55 3	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.25	0.9999 0.9995 0.995 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.79E+02 3.05E+02 2.70E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02 2.38E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.40E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.6667 0.5 0.3 0.2	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.79E+02 3.05E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8 16.2	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.40E+02 3.02E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.2 0.1	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.79E+02 3.05E+02 2.70E+02 2.31E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8 16.2 14.1	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02 2.38E+02 2.03E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.40E+02 3.02E+02 2.58E+02	
10000 2000 1000 200 100 50 20 10 55 3 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.995 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.79E+02 2.70E+02 2.31E+02 2.06E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8 16.2 14.1 12.3	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02 2.38E+02 2.03E+02 1.82E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.40E+02 3.02E+02 2.58E+02 2.30E+02	
10000 2000 1000 200 100 50 20 10 55 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.66667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 3.79E+02 3.05E+02 2.70E+02 2.31E+02 2.06E+02 1.85E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8 16.2 14.1 12.3 1.08E+01	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02 2.38E+02 1.82E+02 1.64E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.40E+02 3.02E+02 2.30E+02 2.06E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.66667 0.5 0.3 0.2 0.1 0.05 0.2 0.1 0.05 0.02 0.01	1.57E+03 1.36E+03 1.28E+03 1.07E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.05E+02 2.70E+02 2.31E+02 2.06E+02 1.85E+02 1.75E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8 16.2 14.1 12.3 1.08E+01 1.01E+01	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02 2.38E+02 2.03E+02 1.82E+02 1.64E+02 1.55E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.40E+02 3.02E+02 2.58E+02 2.30E+02 1.94E+02	
10000 2000 1000 200 100 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02 0.01 0.005	1.57E+03 1.36E+03 1.28E+03 1.28E+03 9.73E+02 8.78E+02 7.50E+02 6.48E+02 5.41E+02 4.57E+02 3.79E+02 2.70E+02 2.31E+02 2.31E+02 1.85E+02 1.75E+02 1.67E+02	2.06E+02 1.68E+02 1.51E+02 1.14E+02 9.84E+01 8.29E+01 6.30E+01 4.86E+01 35.4 27.1 21.5 17.8 16.2 14.1 12.3 1.08E+01 1.01E+01 9.84E+00	1.16E+03 1.04E+03 9.78E+02 8.42E+02 7.80E+02 7.16E+02 6.26E+02 5.53E+02 4.71E+02 4.04E+02 3.37E+02 2.70E+02 2.38E+02 2.38E+02 1.82E+02 1.64E+02 1.55E+02 1.47E+02	1.97E+03 1.69E+03 1.57E+03 1.29E+03 1.17E+03 1.17E+03 1.04E+03 8.73E+02 7.44E+02 6.10E+02 5.11E+02 4.21E+02 3.02E+02 2.58E+02 2.30E+02 2.06E+02 1.94E+02 1.86E+02	

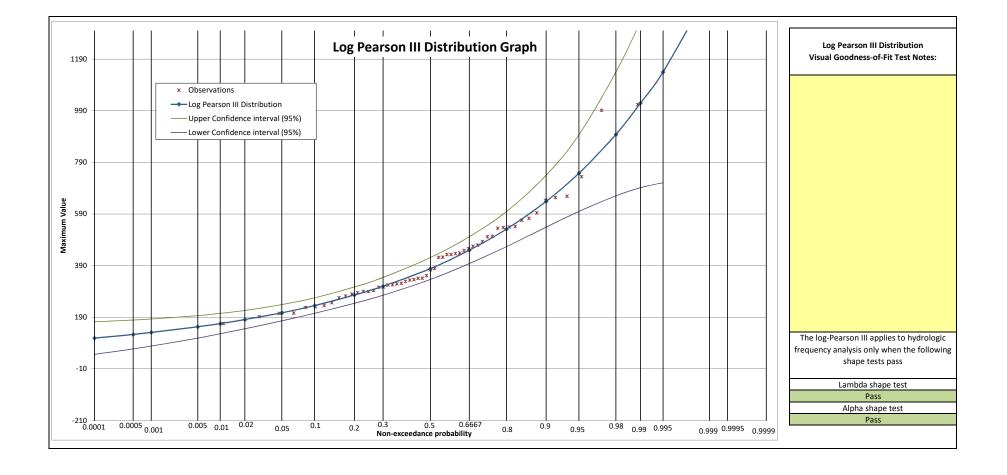

	Type III Distrib					
Paste Log Pearso	on III Distribution Ou	utput from Hyfr	an in Cell Below (A226)			
Ascension Dry Po	ond					
Results of the fitt	ting					
		,				
Log-Pearson type	e III (Méthode SAM)				
Number of obser						
Number of obser						
Parameters						
alpha	51.316846					
lambda	75.797722					
m	1.107428					
Quantiles						
	ceedance probabilit	ty				
T = 1/(1-q)						
T	q	ХТ	Standard deviation	Confidence in	terval (95%)	
10000	0.9999	2.00E+03	7.47E+02	N/D	N/D	
	0.9995	1.61E+03	4.80E+02	N/D	N/D	
2000 1000	0.9995 0.999	1.61E+03 1.46E+03	4.80E+02 3.88E+02			
2000				N/D	N/D	
2000 1000	0.999	1.46E+03	3.88E+02	N/D N/D	N/D N/D	
2000 1000 200	0.999 0.995	1.46E+03 1.14E+03	3.88E+02 2.21E+02	N/D N/D 7.11E+02	N/D N/D 1.58E+03	
2000 1000 200 100	0.999 0.995 0.99	1.46E+03 1.14E+03 1.02E+03	3.88E+02 2.21E+02 1.66E+02	N/D N/D 7.11E+02 6.92E+02	N/D N/D 1.58E+03 1.34E+03	
2000 1000 200 100 50 20 10	0.999 0.995 0.99 0.98 0.95 0.9	1.46E+03 1.14E+03 1.02E+03 8.98E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02	N/D N/D 7.11E+02 6.92E+02 6.60E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03	
2000 1000 200 100 50 20	0.999 0.995 0.99 0.98 0.95	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01	N/D N/D 7.11E+02 6.92E+02 6.60E+02 6.00E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02	
2000 1000 200 100 50 20 10	0.999 0.995 0.99 0.98 0.95 0.9	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01	N/D N/D 7.11E+02 6.92E+02 6.60E+02 6.00E+02 5.39E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02	
2000 1000 200 100 50 20 10 5 5 3	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01	N/D N/D 7.11E+02 6.92E+02 6.60E+02 6.00E+02 5.39E+02 4.63E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02	
2000 1000 200 100 50 20 10 5	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6	N/D N/D 7.11E+02 6.92E+02 6.60E+02 6.00E+02 5.39E+02 4.63E+02 3.98E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02	
2000 1000 200 100 50 20 10 5 3 2 2 1.4286	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6	N/D N/D 7.11E+02 6.92E+02 6.60E+02 6.00E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02	
2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.4286 1.25 1.1111	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5	N/D N/D 7.11E+02 6.92E+02 6.60E+02 6.00E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02	
2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25 1.1111 1.0526	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02 2.76E+02 2.35E+02 2.07E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5 16 15.2 16	N/D N/D 7.11E+02 6.92E+02 6.60E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02 2.44E+02 2.05E+02 1.76E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02 3.07E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02 2.76E+02 2.35E+02 2.07E+02 1.81E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5 16 15.2	N/D N/D 7.11E+02 6.92E+02 6.60E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02 2.44E+02 2.05E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02 3.07E+02 2.65E+02	
2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25 1.1111 1.0526	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02 2.76E+02 2.35E+02 2.07E+02 1.81E+02 1.65E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5 16 15.2 16 18.2 20.2	N/D N/D 7.11E+02 6.92E+02 6.60E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02 2.44E+02 2.05E+02 1.76E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02 3.07E+02 2.65E+02 2.39E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02 2.76E+02 2.35E+02 2.07E+02 1.81E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5 16 15.2 16 18.2 20.2 22.3	N/D N/D 7.11E+02 6.92E+02 6.60E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02 2.44E+02 2.05E+02 1.76E+02 1.45E+02 1.09E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02 3.07E+02 2.65E+02 2.39E+02 2.16E+02 1.96E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02 2.76E+02 2.35E+02 2.07E+02 1.81E+02 1.65E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5 16 15.2 16 18.2 20.2 22.3 26.8	N/D N/D 7.11E+02 6.92E+02 6.60E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02 2.44E+02 2.05E+02 1.76E+02 1.45E+02 1.26E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02 3.07E+02 2.65E+02 2.39E+02 2.16E+02 2.05E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.46E+03 1.14E+03 1.02E+03 8.98E+02 7.48E+02 6.39E+02 5.31E+02 4.50E+02 3.78E+02 3.10E+02 2.76E+02 2.35E+02 2.07E+02 1.81E+02 1.65E+02 1.53E+02	3.88E+02 2.21E+02 1.66E+02 1.21E+02 7.59E+01 5.13E+01 3.47E+01 26.6 21.6 17.5 16 15.2 16 18.2 20.2 22.3	N/D N/D 7.11E+02 6.92E+02 6.60E+02 5.39E+02 4.63E+02 3.98E+02 3.36E+02 2.75E+02 2.44E+02 2.05E+02 1.76E+02 1.45E+02 1.09E+02	N/D N/D 1.58E+03 1.34E+03 1.14E+03 8.97E+02 7.40E+02 5.99E+02 5.02E+02 4.21E+02 3.44E+02 3.07E+02 2.65E+02 2.39E+02 2.16E+02 1.96E+02	

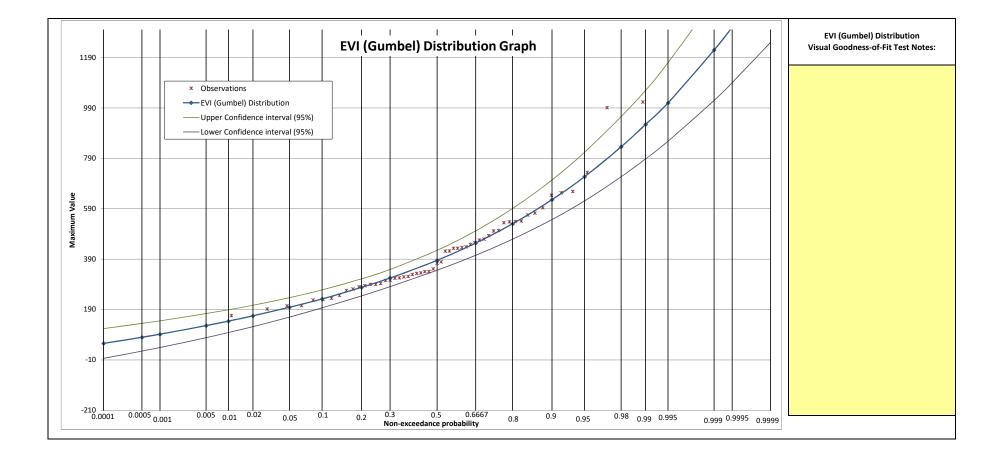

EVI (Gumbel	type of distributions:) Distribution					
•	ution Output from Hy	/fran in Cell Be	elow (A269)			
Ascension Dry P			· · · ·			
Results of the fit	tting					
Gumbel (Maxim	ium Likelihood)					
Number of obse	ervations 55					
Number of obse						
Parameters						
u	338.5398	7				
alpha	127.555943					
Quantiles						
q = F(X) : non-ex	ceedance probability	1				
T = 1/(1-q)						
Г	q	XT	Standard deviation	Confidence in		
10000	0.9999	1.51E+03	1.32E+02	1.25E+03	1.77E+03	
	0.9995	1.31E+03	1.10E+02	1.09E+03	1.52E+03	
1000	0.999	1.22E+03	1.01E+02	1.02E+03	1.42E+03	
1000 200	0.999 0.995	1.22E+03 1.01E+03	7.95E+01	8.58E+02	1.17E+03	
2000 1000 200 100	0.999 0.995 0.99	1.22E+03 1.01E+03 9.25E+02	7.95E+01 7.02E+01	8.58E+02 7.88E+02	1.17E+03 1.06E+03	
1000 200 100 50	0.999 0.995 0.99 0.99 0.98	1.22E+03 1.01E+03 9.25E+02 8.36E+02	7.95E+01 7.02E+01 6.11E+01	8.58E+02 7.88E+02 7.17E+02	1.17E+03 1.06E+03 9.56E+02	
1000 200 100 50 20	0.999 0.995 0.99 0.98 0.95	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01	8.58E+02 7.88E+02 7.17E+02 6.21E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02	
1000 200 100 50 20 10	0.999 0.995 0.99 0.98 0.95 0.9	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 4.00E+01	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02	
1000 200 100 50 20 10 5	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 4.00E+01 31.1	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02	
1000 200 100 50 20 10 5 3	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.6667	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 4.00E+01 31.1 24.7	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02	
1000 200 100 50 20 10 5 3 2 2	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 4.00E+01 31.1 24.7 20.1	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02	
1000 200 100 50 20 10 5 3 2 2 1.4286	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02	
1000 200 100 50 20 10 5 3 2 2 1.4286 1.25	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.9 0.8 0.6667 0.5 0.3 0.2	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 2.32E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 2.32E+02 1.99E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2 19.6	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02 1.60E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02 2.37E+02	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 2.32E+02 1.99E+02 1.65E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2 19.6 21.6	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02 1.60E+02 1.22E+02	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02 2.37E+02 2.07E+02	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 1.99E+02 1.65E+02 1.44E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2 19.6 21.6 23	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02 1.60E+02 9.86E+01	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02 2.37E+02 2.07E+02 1.89E+02	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 2.32E+02 1.99E+02 1.65E+02 1.44E+02 1.26E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2 19.6 21.6 23 24.3	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02 1.60E+02 9.86E+01 7.82E+01	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02 2.37E+02 1.89E+02 1.74E+02	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 2.32E+02 1.99E+02 1.44E+02 1.26E+02 9.20E+01	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2 19.6 21.6 23 24.3 27	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02 1.60E+02 9.86E+01 7.82E+01 3.91E+01	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02 2.37E+02 1.89E+02 1.74E+02 1.45E+02	
1000 200 100 50 20 10 5 3 3 2 1.4286	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.22E+03 1.01E+03 9.25E+02 8.36E+02 7.17E+02 6.26E+02 5.30E+02 4.54E+02 3.85E+02 3.15E+02 2.78E+02 2.32E+02 1.99E+02 1.65E+02 1.44E+02 1.26E+02	7.95E+01 7.02E+01 6.11E+01 4.90E+01 31.1 24.7 20.1 17.5 17.2 18.2 19.6 21.6 23 24.3	8.58E+02 7.88E+02 7.17E+02 6.21E+02 5.47E+02 4.69E+02 4.05E+02 3.46E+02 2.81E+02 2.44E+02 1.97E+02 1.60E+02 9.86E+01 7.82E+01	1.17E+03 1.06E+03 9.56E+02 8.14E+02 7.04E+02 5.91E+02 5.02E+02 4.25E+02 3.49E+02 3.12E+02 2.68E+02 2.37E+02 1.89E+02 1.74E+02	

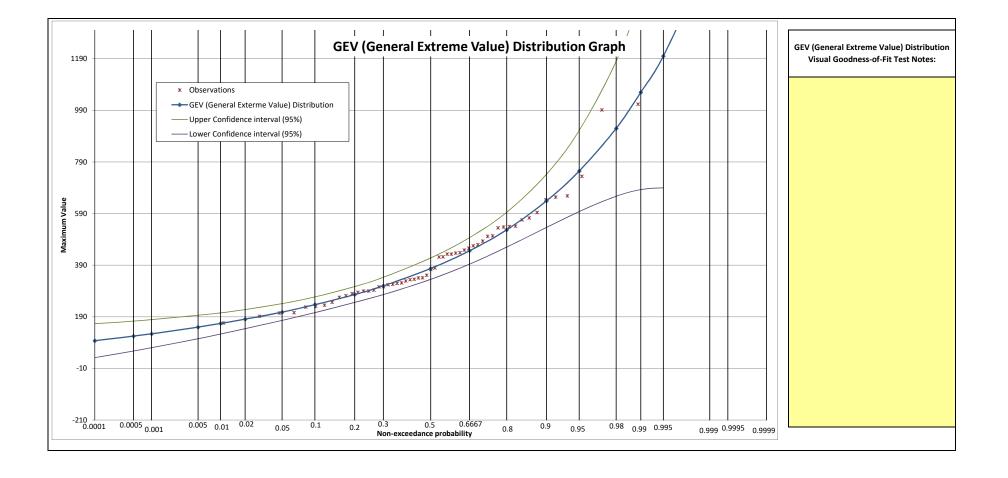

	Extreme Value	cj Distributi				
Paste GEV Distrib	ution Output from	Hyfran in Cell B	Below (A311)			
Ascension Dry Pond						
Results of the fitti	ing					
GEV (Maximum Li	ikelihood)					
Number of observ	vations 55					
Parameters						
alpha	119.59119					
k	-0.114666					
u	331.76208					
q = F(X) : non-exc T = 1/(1-q)	eedance probabilit	·	Stondard deviation	Confidence in	torual (0E0/)	
I	q	XT	Standard deviation	Contidence in	terval (95%)	
10000	0 0000	2 205 . 02	1.005.00			
10000	0.9999	2.29E+03	1.06E+03	N/D	N/D	
2000	0.9995	1.78E+03	6.36E+02	N/D N/D	N/D N/D	
2000 1000	0.9995 0.999	1.78E+03 1.59E+03	6.36E+02 4.98E+02	N/D N/D N/D	N/D N/D N/D	
2000 1000 200	0.9995 0.999 0.995	1.78E+03 1.59E+03 1.20E+03	6.36E+02 4.98E+02 2.62E+02	N/D N/D N/D 6.90E+02	N/D N/D N/D 1.72E+03	
2000 1000 200 100	0.9995 0.999 0.995 0.99	1.78E+03 1.59E+03 1.20E+03 1.06E+03	6.36E+02 4.98E+02 2.62E+02 1.91E+02	N/D N/D 6.90E+02 6.83E+02	N/D N/D 1.72E+03 1.43E+03	
2000 1000 200 100 50	0.9995 0.999 0.995 0.99 0.99 0.98	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02	N/D N/D 6.90E+02 6.83E+02 6.57E+02	N/D N/D 1.72E+03 1.43E+03 1.18E+03	
2000 1000 200 100 50 20	0.9995 0.999 0.995 0.99 0.99 0.98 0.95	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02	
2000 1000 200 100 50 20 10	0.9995 0.999 0.995 0.99 0.98 0.95 0.9	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6	N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02	
2000 1000 200 100 50 20 10 5	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6	N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02	
2000 1000 200 100 50 20	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.8 0.6667	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6	N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02	
2000 1000 200 100 50 20 10 5 5 3 2	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1	N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02	
2000 1000 200 100 50 20 10 5 3 3 2 1.4286	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.8 0.6667 0.5	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02	
2000 1000 200 100 50 20 10 55 3 2 2 1.4286 1.25	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02 2.76E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02	
2000 1000 200 100 50 20 10 55 3 2 1.4286 1.25 1.1111	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02 2.76E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17 15.7	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02 2.76E+02 2.46E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02 3.07E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.3 0.2 0.1	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02 2.76E+02 2.37E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17 15.7 15.4	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02 2.76E+02 2.46E+02 2.06E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02 3.07E+02 2.67E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.2 0.1 0.05	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02 2.76E+02 2.37E+02 2.08E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17 15.7 15.4 16.5	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02 2.76E+02 2.46E+02 2.06E+02 1.76E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02 3.07E+02 2.67E+02 2.41E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02 2.76E+02 2.37E+02 2.08E+02 1.81E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17 15.7 15.4 16.5 19	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02 2.76E+02 2.46E+02 2.06E+02 1.76E+02 1.44E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02 3.07E+02 2.67E+02 2.41E+02 2.18E+02	
2000 1000 200 100 50 20 10 5 5 3	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.1 0.05 0.2 0.1 0.05 0.02 0.02	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02 2.76E+02 2.37E+02 2.08E+02 1.81E+02 1.64E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17 15.7 15.4 16.5 19 21	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 3.35E+02 2.76E+02 2.46E+02 1.76E+02 1.44E+02 1.23E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02 3.07E+02 2.67E+02 2.18E+02 2.05E+02	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.1 0.05 0.2 0.1 0.05 0.02 0.01 0.01 0.005	1.78E+03 1.59E+03 1.20E+03 1.06E+03 9.20E+02 7.55E+02 6.39E+02 5.27E+02 4.46E+02 3.77E+02 3.10E+02 2.76E+02 2.37E+02 1.81E+02 1.64E+02 1.50E+02	6.36E+02 4.98E+02 2.62E+02 1.91E+02 1.34E+02 8.02E+01 52.6 34.6 26.1 20.9 17 15.7 15.4 16.5 19 21 2.31E+01	N/D N/D N/D 6.90E+02 6.83E+02 6.57E+02 5.98E+02 5.36E+02 4.60E+02 3.94E+02 2.76E+02 2.46E+02 2.06E+02 1.76E+02 1.23E+02 1.05E+02	N/D N/D N/D 1.72E+03 1.43E+03 1.18E+03 9.12E+02 7.42E+02 5.95E+02 4.97E+02 4.18E+02 3.43E+02 3.07E+02 2.67E+02 2.18E+02 2.05E+02 1.96E+02	

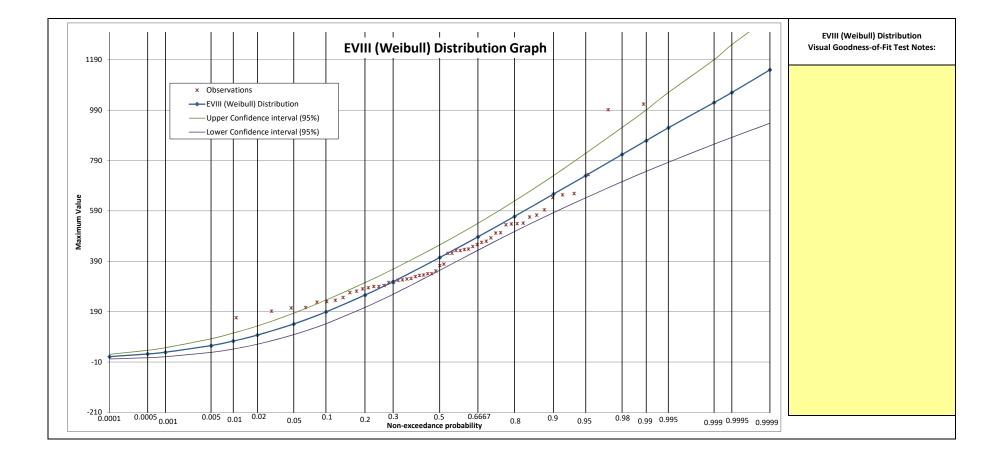

Paste Weibull Di	stribution Output fr	rom Hyfran in C	ell Below (A353)			
Ascension Dry Po	•					
Results of the fit	ting					
Weibull (Maximu	um Likelihood)					
Number of obser	rvations 55					
Parameters						
alpha	469.033402	1				
C	2.476658	<u> </u>				
	2.170030]				
Quantiles						
	ceedance probabilit	ty				
T = 1/(1-q)						
Т	q	ХТ	Standard deviation	Confidence in	terval (95%)	
10000	0.9999	1.15E+03	1.08E+02	9.38E+02	1.36E+03	
2000	0.9995	1.06E+03	9.28E+01	8.82E+02	1.25E+03	
1000	0.999	1.02E+03	8.61E+01	8.55E+02	1.19E+03	
200	0.995	9.20E+02	6.98E+01	7.83E+02	1.06E+03	
200		8.69E+02	6.24E+01	7.47E+02	9.91E+02	
	0.99		5.49E+01	7.06E+02		
100 50	0.99	8.14E+02	51152.01	7.00E+0E	9.21E+02	
100 50		8.14E+02 7.30E+02	4.49E+01	6.42E+02	9.21E+02 8.19E+02	
100 50 20	0.98					
	0.98 0.95	7.30E+02	4.49E+01	6.42E+02	8.19E+02	
100 50 20 10 5	0.98 0.95 0.9	7.30E+02 6.57E+02	4.49E+01 3.76E+01	6.42E+02 5.83E+02	8.19E+02 7.30E+02	
100 50 20 10 5 3	0.98 0.95 0.9 0.8	7.30E+02 6.57E+02 5.68E+02	4.49E+01 3.76E+01 31	6.42E+02 5.83E+02 5.08E+02	8.19E+02 7.30E+02 6.29E+02	
100 50 20 10 5 3 2	0.98 0.95 0.9 0.8 0.6667	7.30E+02 6.57E+02 5.68E+02 4.87E+02	4.49E+01 3.76E+01 31 27.4	6.42E+02 5.83E+02 5.08E+02 4.34E+02	8.19E+02 7.30E+02 6.29E+02 5.41E+02	
100 50 20 10 5 3 2 2 1.4286	0.98 0.95 0.9 0.8 0.6667 0.5	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02	4.49E+01 3.76E+01 31 27.4 25.9	6.42E+02 5.83E+02 5.08E+02 4.34E+02 3.54E+02	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02 1.89E+02	4.49E+01 3.76E+01 31 27.4 25.9 25.5	6.42E+02 5.83E+02 5.08E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02 1.42E+02	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02	4.49E+01 3.76E+01 31 27.4 25.9 25.5 25.1	6.42E+02 5.83E+02 5.08E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02 3.05E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02 1.89E+02	4.49E+01 3.76E+01 31 27.4 25.9 25.5 25.1 23.8	6.42E+02 5.83E+02 5.08E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02 1.42E+02	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02 3.05E+02 2.36E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02 1.89E+02 1.41E+02	4.49E+01 3.76E+01 31 27.4 25.9 25.5 25.1 23.8 21.8	6.42E+02 5.83E+02 5.08E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02 1.42E+02 9.87E+01	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02 3.05E+02 2.36E+02 1.84E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02 1.89E+02 1.41E+02 9.70E+01	4.49E+01 3.76E+01 31 27.4 25.9 25.5 25.1 23.8 21.8 18.6	6.42E+02 5.83E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02 1.42E+02 9.87E+01 6.06E+01	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02 3.05E+02 2.36E+02 1.84E+02 1.33E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02 1.89E+02 1.41E+02 9.70E+01 7.32E+01	4.49E+01 3.76E+01 31 27.4 25.9 25.5 25.1 23.8 21.8 18.6 16.1	6.42E+02 5.83E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02 1.42E+02 9.87E+01 6.06E+01 4.16E+01	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02 3.05E+02 2.36E+02 1.84E+02 1.33E+02 1.05E+02	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01 0.005	7.30E+02 6.57E+02 5.68E+02 4.87E+02 4.05E+02 3.09E+02 2.56E+02 1.89E+02 1.41E+02 9.70E+01 7.32E+01 5.53E+01	4.49E+01 3.76E+01 31 27.4 25.9 25.5 25.1 23.8 21.8 18.6 16.1 13.8	6.42E+02 5.83E+02 5.08E+02 4.34E+02 3.54E+02 2.59E+02 2.07E+02 1.42E+02 9.87E+01 6.06E+01 4.16E+01 2.83E+01	8.19E+02 7.30E+02 6.29E+02 5.41E+02 4.55E+02 3.59E+02 3.05E+02 2.36E+02 1.84E+02 1.33E+02 1.05E+02 8.22E+01	

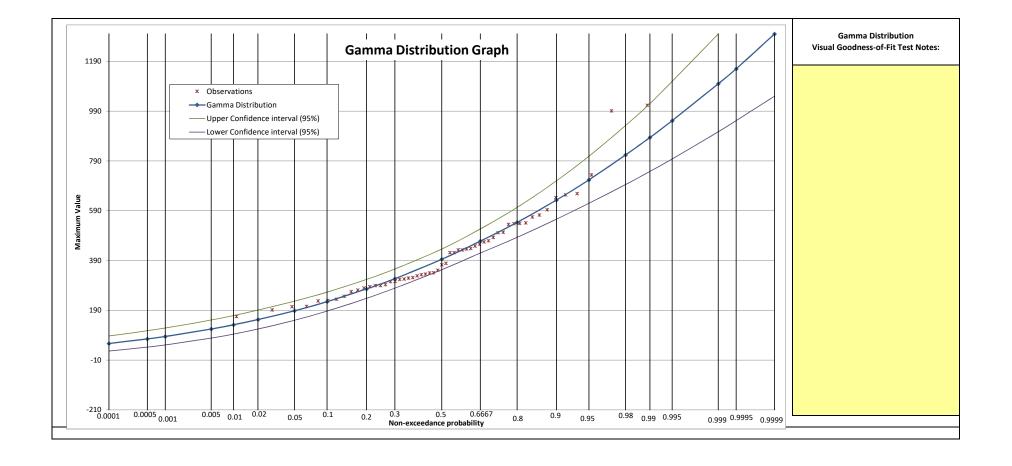

Gamma type of di						
Gamma Distril	bution					
Paste Gamma Dist	ribution Output fr	om Hyfran in C	ell Below (A396)			
Ascension Dry Pon		·				
Results of the fitting						
Gamma (Maximun	n Likelihood)					
Number of observa	ations 55					
Parameters		_				
alpha	0.015686					
lambda	6.518618					
Quantilas						
Quantiles q = F(X) : non-exce	odanco probabilit	24				
$q = F(X) : non-exce}{T = 1/(1-q)}$	euance probabilit	.у				
1 – 1/(1-4)						
т			Current and the factors	Confidence in	torval (05%)	
	a	XT	Standard deviation			
	q 0.9999	XT 1.30E+03	Standard deviation 1.29E+02			
10000	0.9999	1.30E+03	1.29E+02	1.05E+03	1.56E+03	
10000 2000	0.9999 0.9995	1.30E+03 1.16E+03	1.29E+02 1.09E+02	1.05E+03 9.52E+02	1.56E+03 1.38E+03	
10000 2000 1000	0.9999 0.9995 0.999	1.30E+03 1.16E+03 1.10E+03	1.29E+02	1.05E+03	1.56E+03 1.38E+03 1.30E+03	
10000 2000 1000 200	0.9999 0.9995	1.30E+03 1.16E+03	1.29E+02 1.09E+02 9.97E+01	1.05E+03 9.52E+02 9.07E+02	1.56E+03 1.38E+03	
10000 2000 1000 200 100	0.9999 0.9995 0.999 0.999 0.995	1.30E+03 1.16E+03 1.10E+03 9.52E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01	1.05E+03 9.52E+02 9.07E+02 7.98E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03	
10000 2000 1000 200 100 50	0.9999 0.9995 0.999 0.995 0.995 0.99	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01	1.05E+03 9.52E+02 9.07E+02 7.98E+02 7.48E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03	
10000 2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01	1.05E+03 9.52E+02 9.07E+02 7.98E+02 7.48E+02 6.95E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02	
10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01	1.05E+03 9.52E+02 9.07E+02 7.98E+02 7.48E+02 6.95E+02 6.20E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02	
10000 2000 1000 200 100 50 20 10 55 3	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01	1.05E+03 9.52E+02 9.07E+02 7.98E+02 7.48E+02 6.95E+02 6.20E+02 5.56E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02	
10000 2000 1000 200 100 50 20 10 5	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.95 0.9 0.9 0.8	1.30E+03 1.16E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6	1.05E+03 9.52E+02 9.07E+02 7.98E+02 7.48E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02	
10000 2000 1000 200 100 50 20 10 5 5 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3	1.30E+03 1.16E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9	1.05E+03 9.52E+02 9.07E+02 7.98E+02 7.48E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.99 0.99 0.98 0.95 0.9 0.95 0.9 0.50 0.9 0.5 0.6667 0.5 0.3 0.2	1.30E+03 1.16E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 4.68E+02 3.95E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3	1.30E+03 1.16E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02	
10000 2000 1000 200 100 50 20 10 5 5 3 2	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	1.30E+03 1.16E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 4.68E+02 3.95E+02 3.17E+02 2.76E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02 3.14E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02 2.76E+02 2.25E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4 19.5 19.6 19.3	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02 1.87E+02 1.50E+02 1.15E+02	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02 3.14E+02 2.63E+02 2.27E+02 1.91E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.999 0.999 0.99 0.98 0.95 0.9 0.95 0.9 0.30 0.5 0.3 0.2 0.1 0.05 0.02 0.01	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02 2.76E+02 1.88E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4 19.5 19.6 19.3 19	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02 1.87E+02 1.50E+02 1.15E+02 9.47E+01	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02 3.14E+02 2.63E+02 1.91E+02 1.69E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.999 0.99 0.98 0.95 0.9 0.95 0.9 0.95 0.9 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02 2.76E+02 2.25E+02 1.88E+02 1.53E+02 1.32E+02 1.15E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4 19.5 19.3 19 18.6	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02 1.87E+02 1.50E+02 1.15E+02 9.47E+01 7.85E+01	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02 3.14E+02 2.63E+02 2.27E+02 1.91E+02 1.69E+02 1.51E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02 2.76E+02 2.25E+02 1.88E+02 1.53E+02 1.52E+02 1.52E+02 8.50E+01	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4 19.5 19.6 19.3 19 18.6 17.3	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02 1.87E+02 1.50E+02 1.15E+02 9.47E+01 7.85E+01 5.11E+01	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02 3.14E+02 2.63E+02 1.91E+02 1.51E+02 1.51E+02 1.19E+02	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.999 0.99 0.98 0.95 0.9 0.95 0.9 0.95 0.9 0.3 0.2 0.1 0.05 0.02 0.01 0.005	1.30E+03 1.16E+03 1.10E+03 9.52E+02 8.84E+02 8.14E+02 7.14E+02 6.33E+02 5.43E+02 3.95E+02 3.17E+02 2.76E+02 2.25E+02 1.88E+02 1.53E+02 1.32E+02 1.15E+02	1.29E+02 1.09E+02 9.97E+01 7.87E+01 6.96E+01 6.04E+01 4.83E+01 3.93E+01 30.6 24.9 21.2 19.6 19.4 19.5 19.3 19 18.6	1.05E+03 9.52E+02 9.07E+02 7.98E+02 6.95E+02 6.95E+02 6.20E+02 5.56E+02 4.83E+02 4.20E+02 3.53E+02 2.79E+02 2.38E+02 1.87E+02 1.50E+02 1.15E+02 9.47E+01 7.85E+01	1.56E+03 1.38E+03 1.30E+03 1.11E+03 1.02E+03 9.32E+02 8.09E+02 7.10E+02 6.03E+02 5.17E+02 4.36E+02 3.56E+02 3.14E+02 2.63E+02 2.27E+02 1.91E+02 1.69E+02 1.51E+02	











Numerical Tests							
					Choose Significance Level (alpha) :	5%	
1) Anderson-Darling Test (1952)							
$A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} (2i-1) \cdot \left[\ln F(X_{i}) + \ln(1 - F(X_{n-i+1})) \right]$ H0= Data follows specified distribution HA= Data does not follow the specified distribution							
Distribution Type:	Critical Value at 10%	Critical Value at 5%	Critical Value at 1%	A2	Hypothesis	Rank (1 = best fit)	
Normal	1.929	2.502	3.907	1.351	Accept H0	9	
Lognormal	1.929	2.502	3.907	0.256	Accept H0	5	
Lognormal III	1.929	2.502	3.907	0.228	Accept H0	2	
Exponential	1.929	2.502	3.907	2.793	Reject H0	10	
Pearson III	1.929	2.502	3.907	0.230	Accept H0	3	
Log Pearson III	1.929	2.502	3.907	0.226	Accept H0	1	
Gumbel	1.929	2.502	3.907	0.310	Accept H0	6	
GEV	1.929	2.502	3.907	0.250	Accept H0	4	
Weibull	1.929	2.502	3.907	1.085	Accept H0	8	
Gamma	1.929	2.502	3.907	0.443	Accept H0	7	
	*Critical values based or	n values calculated by E	asyFit Software				
2) Kolmogorov-Smirnov Test (1933)						
$F_n(x) = \frac{1}{n} \cdot \left[\text{Number of of} \right]$	bservations $\leq x$	$D_n = \sup_{x} F_n(x) = \sum_{x} F_n(x) $		H0= Data follows sp HA= Data does not f	ecified distribution ollow the specified distribution		
Distribution Type:	Critical Value at 10%	Critical Value at 5%	Critical Value at 1%	Dn	Hypothesis	Rank (1 = best fit)	
Normal	0.165	0.183	0.220	0.118	Accept H0	9	
Lognormal	0.165	0.183	0.220	0.072	Accept H0	1	
Lognormal III	0.165	0.183	0.220	0.084	Accept H0	5	
Exponential	0.165	0.183	0.220	0.192	Reject H0	10	
Pearson III	0.165	0.183	0.220	0.073	Accept H0	2	
Log Pearson III	0.165	0.183	0.220	0.081	Accept H0	4	
Gumbel	0.165	0.183	0.220	0.079	Accept H0	3	
GEV	0.165	0.183	0.220	0.088	Accept H0	6	
Weibull	0.165	0.183	0.220	0.089	Accept H0	7	
Gamma	0.165	0.183	0.220	0.093	Accept H0	8	

The City of Calgary Water Resources Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2- February 2014

Least Squares Ranking NOTES - For a detailed description of the Numerical Goodness of Fit Tests Distribution Type: Standard Error Rank please refer to Section 4.3 of the Frequency Analysis Procedure for $SE_j = \sqrt{\frac{1}{n - m_j} \sum_{i=1}^n (x_i - y_i)^2}$ Stromwater Design Manual Normal 60 9 Lognormal 29 5 - For guidance on choosing the significance level value please refer to Section 2.2.2.6 of the Frequency Analysis Procedure for Stromwater Lognormal III 25 3 Design Manual Exponential 76 10 Pearson III 27 4 25 Log Pearson III 2 Gumbel 34 6 GEV 25 1 Weibull 49 8 Gamma 39 7

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Sampling and Distribution Uncertainty NOTES - Select the distribution type and a return period based on the preferred curve from the Summary Sheet. - The sample uncertainty, distribution uncertainty and total uncertainty for the value will be displayed on the right. For more information regarding uncertainty please refer to Section 4.4 of the Frequency Analysis Procedure for Stormwater Design Manual - The plot below displays all the distributions input in the Frequency Analysis Input Tab Return Period of Interest (Years) Sampling Uncertainty at (95%) Confidence Interval ± 54.5 5 Distribution Type Distribution Uncertainty ± 2 Normal Corresponding Value 564 Total Uncertainty ± 56.5 1 1 Observations **Distributions Graph** 1190 -Normal Distribution Log Normal Distribution -Log Normal III Distribution 990 -Exponential Distribution Pearson Type III Distribution -Log Pearson Type III Distribution 790 Gumbel Distribution GEV Distribution Maximum Value Weibull Distribution 590 Gamma Distribution User Defined Distribution 390 190 -10 -210 _____ 0.0001 0.0005 0.001 0.005 0.01 0.02 0.1 0.3 0.5 0.6667 0.98 0.99 0.995 0.998 0.999 0.9995 0.2 0.9 0.05 0.8 0.95 0.9999 Non-exceedance probability

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

				S	ummary Sheet			
		Initial Statistical	Tests:					Project Information
				4				
	Test	Tests for Station	narity Result	-	Project Name:		Ascension Develo	amont
		No Significant Trend at 0.05 Significance Level		Project Name:		Ascension Develo	Jinen	
Mann-Whitney Test for jump (a		U test)	No Jump at 0.05 Significance Level		Project Description:		Residential Develo	poment - Dry Pond
Wald-Wolfowitz Test (The runs		0 (60)	No Jump at 0.05 Significance Level					
	•			1				
		Tests for Homoge		-				
	Test		Result					
Mann-Whitney Test for jump (a.k.a. Mann-Whitney	U test)	Sample is Homogeneous at 0.05 Significance Level					
Terry Test			Sample is Homogeneous at 0.05 Significance Level	-				
		Tests for Indepen	dence]	Location:		Rocky View Count	у
	Test		Result					
Spearman Rank Order Correlat	tion Coefficient		Data is independent at 0.05 Significance Level		Date:		2022-10-01	
Wald-Wolfowitz Test for Indep	endence		Data is independent at 0.05 Significance Level					
Anderson Test			Data is independent at 0.05 Significance Level		Designed by:		Luis Gerardo Narv	aez
		Test for Outlie	ers	1	Company Name:		LGN Consulting En	gineering Ltd.
	Test		Result	1			3	
Grubbs and Beck Test for Outli				1	Reviewed by:		-	
Are any high outliers present?			No High Outliers Present					
Are and low outliers present?			No Low Outliers Present					
				_				
				Numerical	Goodness-of-fit Tests Resul	ts		
		Numerical Coo	dness-of-fit Tests from Spreadsheet				oodness-of-fit Tests om Hyfran	
Distribution Type		Numerical Good	uness-oi-int rests nom spreadsneet	Average of Ranks	Ranking from Numerical		out by user)	Notes from Visual Goodness-of-fit Test
Distribution Type		1		Average of Kallks	Tests	(111)	at by usery	
	A-D Test	K-S Test	Least Squares Ranking			BIC	AIC	
Normal	9	9	9	9.00	9			
	, in the second s	_	, i i i i i i i i i i i i i i i i i i i	5.00	, j			
Leavenuel	-		_	0.67				
Lognormal	5	1	5	3.67	4			
Lognormal III	2	5	3	3.33	3			
_								
Exponential	10	10	10	10.00	10			
Deerson III	2			2.00	2			
Pearson III	3	2	4	3.00	2			
Log Pearson III	1	4	2	2.33	1			
	-		-	2100	-			
Gumbel	6	3	6	5.00	6			
Guilbei	0	5	8	5.00	0			
CEV	4	C	1	2.67				
GEV	4	6	1	3.67	4			
W/c:hII	0	-	0	7.67	0			
Weibull	8	7	8	7.67	8			
Gamma	7	8	7	7.33	7			
Gaillina	/	0		7.55	/			

_____ _____

-
ļ
ļ
-
ļ
_
ļ
ļ

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

				Selected Distribution and Results	
	n based on visual and numerical goodness-of-fit				Instructions:
istribution type chosen ests:	n based on visual and nume	erical goodness-of-fit	Log Pearso	on III	- Based on the results of the numerical and visual goodness-of-fit tests presented above, choose the preferred distribution in the cell
Return Period	Probability	Magnitude	Total Uncertainty (Upper Bound)	Total Uncertainty (Lower Bound)	7
10000	0.9999	2000	#N/A	#N/A	
2000	0.9995	1610	#N/A	#N/A	
1000	0.9990	1460	#N/A	#N/A	
500 200	0.9980 0.9950	1330 1140	#N/A 1610	#N/A 675	-
100	0.9900	1020	1370	674	
50	0.9800	898	1150	645	
20	0.9500	748	902	594	
10	0.9000	639	742	536	
5	0.8000	531 450	<u> </u>	461 395	-
3	0.5000	378	423	395	-
1.4286	0.3000	310	346	274	
1.25	0.2000	276	309	244	
1.1111	0.1000	235	267	204	
1.0526	0.0500	207	241	173	
1.0204 1.0101	0.0200	181 165	<u> </u>	142 120	-
1.005	0.0050	153	203	120	
1.001	0.0010	133	192	69.8	
1.0005	0.0005	123	189	57.5	
1.0001	0.0001	109	183	34.6	
Total uncertainty is base	ed on sampling uncertainty	at ((95%) Confidence	Interval) plus distribution uncertainty of Top 4 distributions (b	based on numerical goodness of fit tests)	
					-
1190			Log Pearson III Distri	bution Graph	
1150					
	 Observations 				
990	Log Pearson III Dis	stribution			
		Upper Bound			
	Total Uncertainty	/ Lower Bound			
790					
alue					
S 590 -				***	
Aaximum Value				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
A A				X X X X X X X X X X X X X X X X X X X	
390				*****	
			× × × × × × × × × × × × × × × × × × ×	×	
			* * * * * * * * * * * * * * * *		
100			* * * *		
190					
-10					
-210					
-210 0.0001	0.0005 0.001 0.0	0.02 0.01 0.02	0.05 0.1 0.2 0.3 0 Non-exceedance p	0.5 0.6667 0.8 0.9 0.	95 0.98 0.99 0.995 0.998 0.999 0.9995 0.9999
			Non-exceedance p		
				Errors and Warnings	
Cumulati	ive distribution function wa	arning			
	No warning		If a warning is present, please shock if hyfran output results	were posted correctly. If	
	No warning		If a warning is present, please check if hyfran output results hyfran results were pasted correctly the warning signifies		
	No warning		Distribution Function (CDF) used in this workbook does not		
	No warning No warning		values as the input frequency analysis results, which in tu		
	No warning		numerical goodness-of-fit tests calculated by this spreadshee	t for this distribution may	
	No warning		be based on inaccurate numbers. Another possible solut		
	No warning		different method of estimating the CDF parameters for exam	nple: method of weighted	
	No warning		moments.		
	No warning				

cell on the left

DFASCC

Data and Frequency Analysis Spreadsheet for the City of Calgary Version 1.2

PROJECT INFORMATION SHEET

Project Name:	Ascension Development	
Project Description:	Residential Development - Constructed Wetland	
Location:	Rocky View County	
Date:	2022-10-01	
Designed by:	Luis Gerardo Narvaez	
Company Name:	LGN Consulting Engineering Ltd.	
Reviewed by:	-	
		ar Project nation Sheet

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Hydrologic Data Series Input

NOTES

This Spreadsheet is designed for a maximum of 1,000 entries (if more are required then formulas need to be adjusted)
 Input dataset must be based on uniform time distribution (i.e.: daily, weekly, monthly, yearly) and must not include multiple values for any of the time steps (duplicates

highlighted in red)

- Input dataset must not have any missing cells of data (cells with "0" will be treated as having a value of 0)
 - Only positive values should be used

Please refer to Section 2.2 of the Frequency Analysis Procedure for Stormwater Design Manual for Data Series Characteristics detailed descriptions.

Inday	Data	Value	Empirical Probability of Non-Exceedance
Index 1	Date 1960	29050	0.138
2	1960	33530	0.138
3	1961	29230	0.156
4	1963	34950	0.663
5		36420	
	1964		0.754
6	1965	35400	0.717
7	1966	37950	0.790
8	1967	27470	0.029
9	1968	33250	0.536
10	1969	32370	0.482
11	1970	43200	0.935
12	1971	31610	0.391
13	1972	36530	0.772
14	1973	28800	0.101
15	1974	34640	0.645
16	1975	27150	0.011
17	1976	32510	0.500
18	1977	29660	0.192
19	1978	39000	0.862
20	1979	29790	0.228
21	1980	33010	0.518
22	1981	35700	0.736
23	1982	28530	0.083
24	1983	30850	0.337
25	1984	32240	0.428
26	1985	50310	0.971
27	1986	38680	0.844
28	1987	30060	0.283
29	1988	39900	0.880
30	1989	27660	0.047
31	1990	30990	0.355
32	1991	30630	0.301
33	1992	40700	0.917
34	1993	34230	0.627
35	1994	29890	0.246
36	1995	30020	0.264
37	1996	29740	0.210
38	1997	40120	0.899
39	1998	38410	0.808
40	1999	35030	0.681
41	2000	31160	0.373
42	2001	33600	0.591
43	2002	27870	0.065
44	2003	29590	0.174
45	2004	33700	0.609
46	2005	47730	0.953
47	2006	32350	0.464
48	2007	53160	0.989
49	2008	30690	0.319
50	2009	28900	0.120
51	2010	32250	0.446
52	2011	33320	0.554
53	2012	35090	0.699
54	2013	38470	0.826
55	2014	31990	0.409

Clear	All	Input	Data
-------	-----	-------	------

Basic Characteristics				
Number of Data Entries	55			
Maximum Value	53200			
Minimum Value	27200			
Average (Mean) Value	34000			
Median Value	32500			
Standard Deviation	5510			
Variance	30400000			
Variation coefficient (Cv)	0.162			
Skewness coefficient (Cs)	1.56			
Kurtosis	5.3			

*Values assumed to be sample not full population

Empirical Probability of Non-Exceedance (Plotting Position) based on:					
F(x(k)) = (k-a)/ (n-2a+1), 0 <=a<=0.5					
a =	0.4	Cunnane (1978)			
k= rank of the even in question (in ascending order)					
n=	55				

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Test for Trend:		Choose Significance Level (alpha): 5%
1) Spearman Rank Order Correlation Coefficient		
$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}.$		H ₀ = Data has no trend
Spearman Correlation Coefficient:	0.068	
When there are no ties in rankings: $ ho = 1 - rac{6\sum d_t^2}{n(n^2-1)}.$		based on z No Significant Trend at 0.05 Significance Level based on t No Significant Trend at 0.05 Significance Level
Spearman Correlation Coefficient:	0.068	T (Adjustment for ties) =
t-distribution value	0.498	Standard Normal (z)= 0
Degrees of freedom	53	
Tests for Jump: 2) Mann-Whitney Test for jump (a.k.a. Mann-Whitne	y U test)	
ndex number of subsample divide	22	
$U_1 = R_1 - \frac{n_1(n_1 + 1)}{2}$		H ₀ = Independent samples drawn from the same population (No Jump
Number of values in sample 1 n ₁ =	22	No Jump at 0.05 Significance Level
Number of values in sample 2 n ₂ =	33	
Total of Ranking in sample 1 R ₁ =	601	
Total of Ranking in sample 2 R ₂ =		
$U_1 + U_2 = n_1 n_2.$	348	
J ₇ =	378	
U (Minimum of U ₁ and U ₂)=	348	
Standard Normal (z)=	-0.258	
3) Wald-Wolfowitz Test (The runs test)		
$\mu = \frac{2 N_+ N}{N} + 1,$	$\sigma^2 - \frac{2 N_+ N}{2}$	$\frac{(2 N_{+} N_{-} - N)}{\sqrt{2} (N - 1)} = \frac{(\mu - 1)(\mu - 2)}{N - 1}.$
Number of data greater than median N_{\star} =	27	H_0 = Data represent sample of single independently distributed randor
Number of data less than median N_{c} =	27	variable (No Jump)
Fotal number of runs =	34	
Mean =	28.0	No Jump at 0.05 Significance Level
Variance =	13.2	
Standard Normal (z)=	1.5	
NOTES		

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

	Но	mogeneity	
		Choose Significance Level (alpha):	5%
Mann-Whitney Test for homogeneity (a.k.a.	Mann-Whitney U test)		
Index number of subsample divide	28		
$n_{i}(n_{i})$	⊥ 1)	H ₀ = There is homogeneity between samples w	ith respect to probability of
$U_1 = R_1 - \frac{n_1(n_1 - n_2)}{2}$	+ 1)	random drawing of a larger observation	
2			
		Sample is Homogeneous at 0.05	Significance Level
Number of values in sample 1 n ₁ =	28		
Number of values in sample 2 n ₂ =	27		
Total of Ranking in sample 1 R ₁ =	766		
Total of Ranking in sample 1 R ₂ =			
U ₁ =	360		
$U_1 + U_2 = n_1 n_2$	¹ 2.		
U ₂ =	396		
U (Minimum of U_1 and U_2)=	360		
Standard Normal (z)=	-0.303		
Terry Test			
Index number of subsample divide	28	H_0 = There is homogeneity between samples w	ith respect to probability of
Total complexity	55	random drawing of a larger observation	
Total sample size Subsample 1 (m)	55 28		
Subsample 2 (n)	28		
(II)	<u></u>	Sample is Homogeneous at 0.05	Significance Level
Standard Deviation =	3.654		
Sum of ranks in first subsample c =	2.001		
Z =	0.548		

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Independence Choose Significance Level (alpha): 5% 1) Spearman Rank Order Correlation Coefficient $\frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}$ H₀= Data is independent $\rho =$ Spearman Correlation Coefficient: -0.12 Data is independent at 0.05 Significance Level When there are no ties in rankings: $\frac{6\sum d_i^2}{n(n^2 - 1)}$ $\rho = 1 -$ Spearman Correlation Coefficient -0.12 t-distribution value -0.87 Degrees of freedom 53 2) Wald-Wolfowitz Test $\sum_{i=1}^{N-1} x_i x_{i+1} + x_1 x_N$ R =6340000000 Statistic R H₀= Data is independent Mean 6350000000 4.47E+16 Variance Data is independent at 0.05 Significance Level Standard Normal (z)= -0.5 2) Anderson Test $\left[\sum_{i=1}^{N-1} x_i x_{i+1} + x_1 x_N - \left(\sum_{i=1}^N x_i\right)^2 \middle/ N\right] \middle/ \left[\sum_{i=1}^N x_i^2 - \left(\sum_{i=1}^N x_i\right)^2 \middle/ N\right]$ $r_1 =$ Statistic r -0.078 Mean -0.019 H₀= Data is independent 0.018 Variance Data is independent at 0.05 Significance Level -0.4 Standard Normal (z)=

		Outliers
		Significance Level (alpha): 10%
Grubbs and Beck test for Outliers		
1) High Outliers		Assumption: logarithms of sample are normally distributed
$K_{h} = \exp(xmean + K_{n}S)$		
	NOTENAL /2 10 401426NA2 /4 0 027011N	
	835N^1/2+0.491436N^3/4-0.037911N	for 5 <n<150< td=""></n<150<>
K(n) = -0.9043+3.345*SQRT(log(n))-0.4046log(n)	TOF 5 <n<150< td=""></n<150<>
Sample Size (n) =	55	
<(n) =	2.80	
K(n) for 5 <n<150 =<="" td=""><td>2.80</td><td></td></n<150>	2.80	
K _b =	51000	< Any value higher than X _h is considered a high outlier
	53200	
	53200 High Outlier May Be Present	
Maximum Value		
Maximum Value High Outliers		
Vaximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S)	High Outlier May Be Present	
Vaximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S)	High Outlier May Be Present 835N^1/2+0.491436N^3/4-0.037911N	for 5 <n<150< td=""></n<150<>
Vaximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S) <((n) =-3.62201+6.2844N^1/4-2.49	High Outlier May Be Present 835N^1/2+0.491436N^3/4-0.037911N	for 5 <n<150< td=""></n<150<>
Vaximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S) <((n) =-3.62201+6.2844N^1/4-2.49	High Outlier May Be Present 835N^1/2+0.491436N^3/4-0.037911N	for 5 <n<150< td=""></n<150<>
Maximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S) x(n) =-3.62201+6.2844N^1/4-2.49 x(n) = -0.9043+3.345*SQRT(log(n) Sample Size (n) = x(n) =	High Outlier May Be Present 1835N^1/2+0.491436N^3/4-0.037911N)-0.4046log(n)	for 5 <n<150< td=""></n<150<>
Maximum Value High Outliers 2) Low Outliers (n) =-3.62201+6.2844N^1/4-2.49 (n) =-0.9043+3.345*SQRT(log(n) Sample Size (n) = ((n) =	High Outlier May Be Present 1835N^1/2+0.491436N^3/4-0.037911N)-0.4046log(n) 55	for 5 <n<150< td=""></n<150<>
Waximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S) K(n) =-3.62201+6.2844N^1/4-2.49 K(n) = -0.9043+3.345*SQRT(log(n) Sample Size (n) =	High Outlier May Be Present 2835N^1/2+0.491436N^3/4-0.037911N)-0.4046log(n) 55 2.80	for 5 <n<150< td=""></n<150<>
Maximum Value High Outliers 2) Low Outliers K _h = exp (xmean-K _n S) <(n) =-3.62201+6.2844N^1/4-2.49	High Outlier May Be Present High Outlier May Be Present High Outlier May Be Present S835N^1/2+0.491436N^3/4-0.037911N)-0.4046log(n) 55 2.80 2.80 2.80	

Dependent Dataset		
	Choose Significance Level (alpha):	5%
utocorrelation coefficient		
$R_{c}(\tau) = \frac{\sum_{i=1}^{N- \tau } X_{i}Y_{i+\tau} - \frac{1}{N- \tau } \left(\sum_{i=1}^{N- \tau } X_{i}\right) \left(\sum_{i=\tau+1}^{N} Y_{i}\right)}{\left[\sum_{i=1}^{N- \tau } X_{i}^{2} - \frac{1}{N- \tau } \left(\sum_{i=1}^{N- \tau } X_{i}\right)^{2}\right]^{0.5} \left[\sum_{i=1+ \tau }^{N} Y_{i}^{2} - \frac{1}{N- \tau } \left(\sum_{i=1+ \tau }^{N} Y_{i}\right)^{2}\right]^{0.5}}$	5	
Ine Time Period Offset utocorrelation coefficient offset by one time period r(1) = -0.085	H ₀ - The data is not serially correlated No Serial Correlation at 0.05 Significance Le	vel
-distribution values for one time period offset t = -0.623		
Two Time Periods Offset	No Serial Correlation at 0.05 Significance Le	vol
-distribution values for two time periods offset $t = 0.510$	No Senar Correlation at 0.05 Significance Le	VCI
nstructions: Compare the results of the autocorrelation tests for one time period offset and for the two time perior The finding for the one period time step is serially correlated, and the finding for the two time step inlikely to produce an independent data set suitable for frequency analysis. In this case, other metho t. The finding for the one period time step is serially correlated, and the finding for the two time step	is also serially correlated. In this case, transposing the ds, such as the Monte Carlo simulation are necessary	ne data seri /-

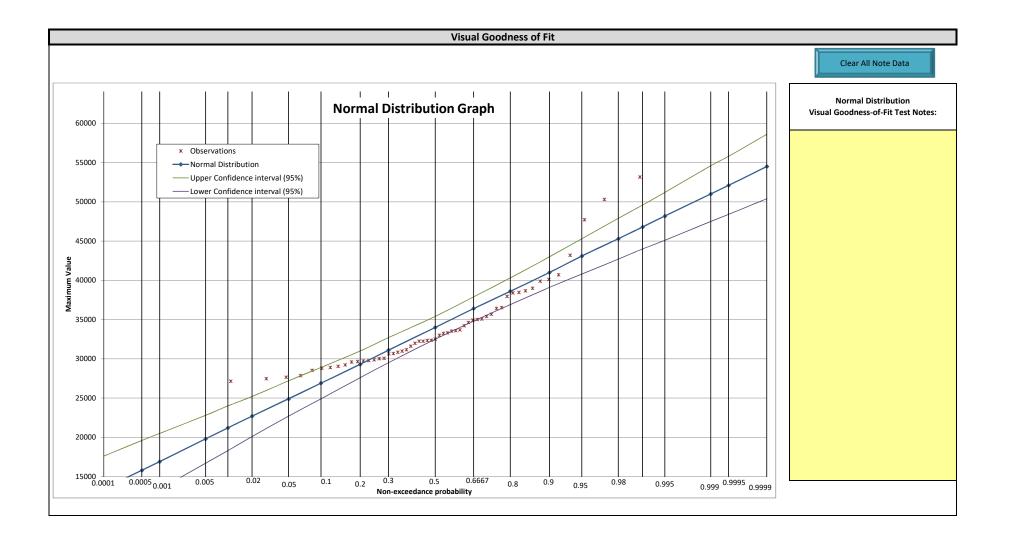
		Fr	equency Analysis Re	sults Input		
				-	Clear All	Input Data
NOTES						
			10 specific Frequency Ana			
- The input data i	must be in the same	format as the	output table from Hyfran	(either copied and	l pasted special as to	ext in the top
			as distribution results and	•	parameters in spec	ified areas.
•	• •	•	d of estimation per distribu			
- Refer to Section	n 3.3.1 and 3.3.2 of	the Frequency	Analysis Procedures for S	tormwater Design	Manual for guidan	ce when
choosing methoo						
		he Frequency:	Analysis Procedures for S	tormwater Design	Manual for a descr	iption of each
	and its limitations					
			be copied into the last inp		t will be displayed in	n the visual
goodness of fit ta	ab, however no num	erical goodnes	s of fit tests will be perform	med on it.		
	an) type of distributi	ons:				
Normal Distr	ibution:					
Paste Normal Dis	stribution Hyfran Ou	tput in Cell Bel	ow (A15)			
Ascension Constr	ructed Wetland					
Results of the fitt	ting					
Normal (Maximu	ım Likelihood)					
Number of obser	rvations 55					
D						
Parameters	22002 2727	-				
mu	33983.2727	4				
sigma	5513.2692					
Quantiles						
	aaadanaa xxababilit					
q = F(X) : non-exc T = 1/(1-q)	ceedance probability	,				
1 – 1/(1-4)						
т						
	n	XT	Standard deviation	Confidence in	terval (95%)	
10000	q 0.9999	XT 5.45E+04	Standard deviation 2.11E+03	Confidence in 5.04E+04		
10000	0.9999	5.45E+04	2.11E+03	5.04E+04	5.86E+04	
2000	0.9999	5.45E+04 5.21E+04	2.11E+03 1.90E+03	5.04E+04 4.84E+04	5.86E+04 5.58E+04	
2000 1000	0.9999 0.9995 0.999	5.45E+04 5.21E+04 5.10E+04	2.11E+03 1.90E+03 1.80E+03	5.04E+04 4.84E+04 4.75E+04	5.86E+04 5.58E+04 5.46E+04	
2000 1000 200	0.9999 0.9995 0.999 0.999 0.995	5.45E+04 5.21E+04 5.10E+04 4.82E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04	5.86E+04 5.58E+04 5.46E+04 5.12E+04	
2000 1000 200 100	0.9999 0.9995 0.999 0.995 0.995 0.99	5.45E+04 5.21E+04 5.10E+04 4.82E+04 4.68E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04	5.86E+04 5.58E+04 5.46E+04 5.12E+04 4.96E+04	
2000 1000 200 100 50	0.9999 0.9995 0.999 0.995 0.995 0.99 0.99	5.45E+04 5.21E+04 5.10E+04 4.82E+04 4.68E+04 4.53E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04	5.86E+04 5.58E+04 5.46E+04 5.12E+04 4.96E+04 4.79E+04	
2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.995 0.99 0.98 0.95	5.45E+04 5.21E+04 5.10E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04	5.86E+04 5.58E+04 5.46E+04 5.12E+04 4.96E+04	
2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9	5.45E+04 5.21E+04 5.10E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 4.10E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04	5.86E+04 5.58E+04 5.46E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04	
2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.9 0.8	5.45E+04 5.21E+04 5.10E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 4.10E+04 3.86E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.03E+04	
2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.8 0.6667	5.45E+04 5.21E+04 5.10E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 4.10E+04 3.86E+04 3.64E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.03E+04 3.79E+04	
2000 1000 200 100 50 20 10 5 3 3 2	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5	5.45E+04 5.21E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 4.10E+04 3.86E+04 3.64E+04 3.40E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.03E+04 3.79E+04 3.54E+04	
2000 1000 200 100 50 20 10 5 3 2 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3	5.45E+04 5.21E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 4.10E+04 3.86E+04 3.64E+04 3.40E+04 3.11E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04 2.95E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.03E+04 3.79E+04 3.54E+04 3.27E+04	
2000 1000 200 100 50 20 10 55 3 2 1.4286 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2	5.45E+04 5.21E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 3.86E+04 3.64E+04 3.40E+04 3.11E+04 2.93E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04 2.95E+04 2.76E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 3.79E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04	
2000 1000 200 100 50 20 10 55 3 2 1.4286 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	5.45E+04 5.21E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 3.86E+04 3.64E+04 3.40E+04 3.11E+04 2.93E+04 2.69E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867 1010	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04 2.95E+04 2.76E+04 2.49E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.03E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04 2.89E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	5.45E+04 5.21E+04 4.82E+04 4.82E+04 4.68E+04 4.53E+04 4.31E+04 3.86E+04 3.64E+04 3.64E+04 3.40E+04 2.93E+04 2.69E+04 2.49E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867 1010 1150	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04 2.95E+04 2.76E+04 2.49E+04 2.27E+04	5.86E+04 5.58E+04 5.46E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 3.79E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04 2.89E+04 2.72E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	5.45E+04 5.21E+04 4.82E+04 4.68E+04 4.53E+04 4.10E+04 3.86E+04 3.64E+04 3.64E+04 3.11E+04 2.93E+04 2.69E+04 2.27E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867 1010 1150 1.32E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.27E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04 2.95E+04 2.76E+04 2.27E+04 2.27E+04 2.01E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04 2.89E+04 2.72E+04 2.52E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.1 0.05 0.2 0.1 0.05 0.02 0.01	5.45E+04 5.21E+04 4.82E+04 4.82E+04 4.53E+04 4.53E+04 4.31E+04 3.86E+04 3.64E+04 3.40E+04 3.40E+04 3.11E+04 2.93E+04 2.69E+04 2.27E+04 2.12E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867 1010 1150 1.32E+03 1.44E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.51E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.69E+04 3.25E+04 2.95E+04 2.76E+04 2.27E+04 2.27E+04 2.01E+04 1.83E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.30E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04 2.89E+04 2.72E+04 2.52E+04 2.40E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	5.45E+04 5.21E+04 4.82E+04 4.82E+04 4.68E+04 4.53E+04 4.10E+04 3.86E+04 3.64E+04 3.40E+04 3.11E+04 2.93E+04 2.69E+04 2.27E+04 2.12E+04 1.98E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867 1010 1150 1.32E+03 1.44E+03 1.56E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.40E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.48E+04 3.25E+04 2.95E+04 2.76E+04 2.49E+04 2.27E+04 2.01E+04 1.83E+04 1.67E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.30E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04 2.89E+04 2.52E+04 2.52E+04 2.28E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.1 0.05 0.2 0.1 0.05 0.02 0.01	5.45E+04 5.21E+04 4.82E+04 4.82E+04 4.53E+04 4.53E+04 4.31E+04 3.86E+04 3.64E+04 3.40E+04 3.40E+04 3.11E+04 2.93E+04 2.69E+04 2.27E+04 2.12E+04	2.11E+03 1.90E+03 1.80E+03 1.56E+03 1.44E+03 1.32E+03 1150 1010 867 778 743 794 867 1010 1150 1.32E+03 1.44E+03	5.04E+04 4.84E+04 4.75E+04 4.51E+04 4.51E+04 4.27E+04 4.08E+04 3.91E+04 3.69E+04 3.69E+04 3.25E+04 2.95E+04 2.76E+04 2.27E+04 2.27E+04 2.01E+04 1.83E+04	5.86E+04 5.58E+04 5.12E+04 4.96E+04 4.79E+04 4.53E+04 4.30E+04 4.30E+04 3.79E+04 3.54E+04 3.27E+04 3.10E+04 2.89E+04 2.72E+04 2.52E+04 2.40E+04	

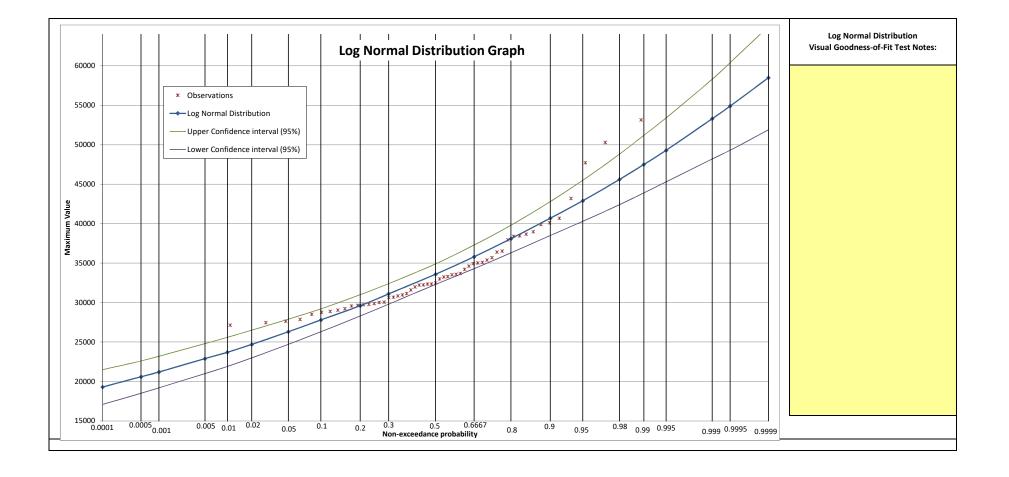
Lognormal Di	istribution:					
Paste Lognormal	Distribution Outpu	ut from Hyfran i	n Cell Below (A57)			
Ascension Constr	ucted Wetland					
Results of the fitt	ing					
	-					
Lognormal (Maxi	mum Likelihood)					
Number of obser	vations 55					
Parameters						
mu	10.422123					
sigma	0.149051					
Quantiles q = F(X) : non-exc	ceedance probabili	ty				
T = 1/(1-q)						
-/(//						
T	q	ХТ	Standard deviation	Confidence in	terval (95%)	
T	q 0.9999	XT 5.85E+04	Standard deviation 3.33E+03	Confidence in 5.19E+04	terval (95%) 6.50E+04	
T 10000						
T 10000 2000	0.9999	5.85E+04	3.33E+03	5.19E+04	6.50E+04	
T 10000 2000 1000	0.9999 0.9995 0.999 0.999 0.995	5.85E+04 5.49E+04	3.33E+03 2.81E+03	5.19E+04 4.93E+04	6.50E+04 6.04E+04	
T 10000 2000 1000 200 100	0.9999 0.9995 0.999 0.995 0.995 0.99	5.85E+04 5.49E+04 5.33E+04	3.33E+03 2.81E+03 2.59E+03	5.19E+04 4.93E+04 4.82E+04	6.50E+04 6.04E+04 5.83E+04	
T 10000 2000 1000 200 100	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98	5.85E+04 5.49E+04 5.33E+04 4.93E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03	5.19E+04 4.93E+04 4.82E+04 4.53E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04	
T 10000 2000 1000 200 100 50 200	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04	
T 10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.98 0.98 0.95 0.9	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 4.07E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04	
T 10000 2000 1000 200 100 50 20 10 55	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 4.07E+04 3.81E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04	
T 10000 2000 1000 200 100 50 20 10 5 5 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.8 0.6667	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 4.07E+04 3.81E+04 3.58E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04	
T 10000 2000 1000 200 100 50 20 10 5 5 3 2 2	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 4.07E+04 3.81E+04 3.58E+04 3.36E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 675	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.49E+04	
T 10000 2000 1000 200 100 50 20 10 5 5 3 2 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	5.85E+04 5.49E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 4.07E+04 3.81E+04 3.58E+04 3.36E+04 3.11E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 675 667	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04 2.98E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.49E+04 3.24E+04	
T 10000 2000 1000 200 100 50 20 10 5 5 3 2 2 1.4286 1.25	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	5.85E+04 5.49E+04 4.93E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 3.81E+04 3.81E+04 3.36E+04 3.11E+04 2.96E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 675 667 695	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04 2.98E+04 2.83E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04	
T 10000 2000 1000 200 100 50 20 10 5 5 3 2 2 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	5.85E+04 5.49E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 4.07E+04 3.81E+04 3.58E+04 3.36E+04 3.11E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 675 667 695 756	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04 2.98E+04 2.83E+04 2.63E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04 2.92E+04	
T 10000 2000 1000 200 100 50 20 10 55 3 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	5.85E+04 5.49E+04 4.93E+04 4.75E+04 4.75E+04 4.29E+04 4.07E+04 3.81E+04 3.58E+04 3.36E+04 3.11E+04 2.96E+04 2.78E+04 2.63E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 667 695 756 815	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04 2.98E+04 2.83E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04	
T 10000 2000 1000 200 100 50 20 10 55 32 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.999 0.995 0.99 0.99 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 3.81E+04 3.58E+04 3.36E+04 3.11E+04 2.96E+04 2.78E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 667 695 756 815 882	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04 2.98E+04 2.83E+04 2.63E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04 2.92E+04	
T 10000 2000 1000 200 100 50 20 10 55 3 20 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	5.85E+04 5.49E+04 4.93E+04 4.75E+04 4.75E+04 4.29E+04 4.07E+04 3.81E+04 3.58E+04 3.36E+04 3.11E+04 2.96E+04 2.78E+04 2.63E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 667 695 756 815	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.63E+04 3.23E+04 2.98E+04 2.83E+04 2.63E+04 2.63E+04 2.47E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04 2.92E+04 2.79E+04	
T 10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	5.85E+04 5.49E+04 4.93E+04 4.93E+04 4.75E+04 4.29E+04 4.29E+04 3.81E+04 3.58E+04 3.36E+04 3.11E+04 2.96E+04 2.78E+04 2.63E+04 2.47E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 667 695 756 815 882	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.43E+04 3.23E+04 2.98E+04 2.83E+04 2.63E+04 2.63E+04 2.47E+04 2.30E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04 2.92E+04 2.79E+04 2.65E+04	
T 10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01	5.85E+04 5.49E+04 5.33E+04 4.93E+04 4.75E+04 4.29E+04 4.29E+04 3.81E+04 3.81E+04 3.36E+04 3.36E+04 2.96E+04 2.78E+04 2.63E+04 2.47E+04 2.37E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 675 667 695 756 815 882 925	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.24E+04 4.03E+04 3.85E+04 3.63E+04 3.63E+04 3.23E+04 2.98E+04 2.83E+04 2.63E+04 2.63E+04 2.30E+04 2.19E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.49E+04 3.10E+04 2.92E+04 2.79E+04 2.65E+04	
T 10000 2000 1000 200 100 50 20 10 55 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	5.85E+04 5.49E+04 4.93E+04 4.93E+04 4.75E+04 4.56E+04 4.29E+04 3.81E+04 3.58E+04 3.36E+04 3.36E+04 2.96E+04 2.78E+04 2.63E+04 2.47E+04 2.37E+04 2.29E+04	3.33E+03 2.81E+03 2.59E+03 2.07E+03 1.85E+03 1.63E+03 1.33E+03 1.11E+03 8.93E+02 753 667 695 756 815 882 925 962	5.19E+04 4.93E+04 4.82E+04 4.53E+04 4.39E+04 4.39E+04 4.24E+04 3.85E+04 3.63E+04 3.63E+04 3.23E+04 2.98E+04 2.83E+04 2.63E+04 2.63E+04 2.30E+04 2.19E+04 2.10E+04	6.50E+04 6.04E+04 5.83E+04 5.34E+04 5.12E+04 4.88E+04 4.55E+04 4.28E+04 3.98E+04 3.73E+04 3.24E+04 3.10E+04 2.92E+04 2.65E+04 2.56E+04	

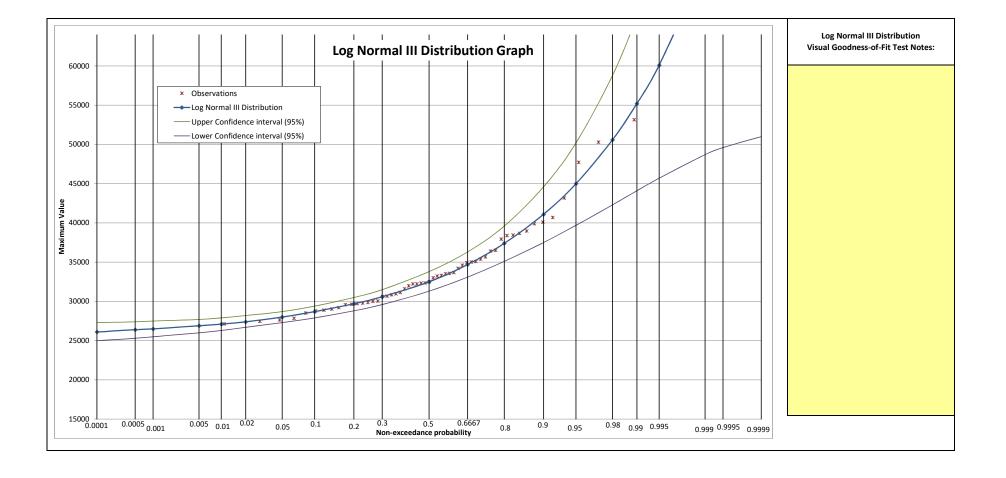
	Distribution					
Paste Lognormal	III Distribution Outp	ut from Hyfrai	n in Cell Below (A99)			
Ascension Constr	ucted Wetland	<u> </u>				
Results of the fitt	ing					
3-parameter logn	ormal (Maximum Li	kelihood)				
Number of obser	vations 55					
Parameters						
m	25418.1441					
mu	8.870894					
sigma	0.614484					
Quantiles q = F(X) : non-exc T = 1/(1-q)	eedance probability					
T	q	ХТ	Standard deviation	Confidence in		
10000	0.9999	9.54E+04	2.27E+04	5.10E+04	1.40E+05	
~ ~ ~ ~	0.0005	7.92E+04	1.51E+04	4 9 6 5 9 4	4.005.05	
2000	0.9995			4.96E+04	1.09E+05	
1000	0.999	7.30E+04	1.24E+04	4.87E+04	9.73E+04	
1000 200	0.999 0.995	7.30E+04 6.01E+04			9.73E+04 7.45E+04	
1000 200 100	0.999 0.995 0.99	7.30E+04 6.01E+04 5.52E+04	1.24E+04 7.35E+03 5.65E+03	4.87E+04 4.57E+04 4.41E+04	9.73E+04 7.45E+04 6.63E+04	
1000 200 100 50	0.999 0.995 0.99 0.99 0.98	7.30E+04 6.01E+04	1.24E+04 7.35E+03	4.87E+04 4.57E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04	
1000 200 100 50 20	0.999 0.995 0.99	7.30E+04 6.01E+04 5.52E+04	1.24E+04 7.35E+03 5.65E+03	4.87E+04 4.57E+04 4.41E+04	9.73E+04 7.45E+04 6.63E+04	
1000 200 100 50 20 10	0.999 0.995 0.99 0.98 0.95 0.95 0.9	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04	
1000 200 100 50 20 10 5	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.9	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04	
1000 200 100 50 20 10 5 3	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04	
1000 200 100 50 20 10 5 3 2 2	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.38E+04	
1000 200 100 50 20 10 5 3 2 2 1.4286	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.38E+04 3.15E+04	
1000 200 100 50 20 10 5 3 2 2 1.4286 1.25	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04 2.97E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04 2.88E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.2 0.1	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04 2.97E+04 2.87E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04 2.88E+04 2.79E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04 2.97E+04 2.87E+04 2.80E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363 348	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04 2.88E+04 2.79E+04 2.73E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04 2.97E+04 2.87E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363 348 367	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04 2.88E+04 2.79E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04 2.87E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02 0.01	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04 2.97E+04 2.87E+04 2.80E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363 348 367 396	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 2.96E+04 2.88E+04 2.79E+04 2.73E+04 2.67E+04 2.63E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04 2.87E+04 2.82E+04 2.79E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02 0.01 0.005	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.25E+04 3.06E+04 2.97E+04 2.87E+04 2.80E+04 2.74E+04 2.71E+04 2.69E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363 348 367	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04 2.88E+04 2.79E+04 2.73E+04 2.67E+04 2.63E+04 2.60E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04 2.87E+04 2.82E+04 2.77E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02 0.01	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.47E+04 3.25E+04 3.06E+04 2.97E+04 2.87E+04 2.80E+04 2.74E+04 2.71E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363 348 367 396	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 2.96E+04 2.88E+04 2.79E+04 2.73E+04 2.67E+04 2.63E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04 2.87E+04 2.82E+04 2.79E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.2 0.1 0.05 0.02 0.01 0.005	7.30E+04 6.01E+04 5.52E+04 5.06E+04 4.50E+04 4.11E+04 3.74E+04 3.25E+04 3.25E+04 2.97E+04 2.87E+04 2.80E+04 2.74E+04 2.71E+04 2.69E+04	1.24E+04 7.35E+03 5.65E+03 4.21E+03 2.68E+03 1.80E+03 1150 818 623 481 419 363 348 367 396 430	4.87E+04 4.57E+04 4.41E+04 4.23E+04 3.97E+04 3.75E+04 3.51E+04 3.31E+04 3.13E+04 2.96E+04 2.88E+04 2.79E+04 2.73E+04 2.67E+04 2.63E+04 2.60E+04	9.73E+04 7.45E+04 6.63E+04 5.88E+04 5.02E+04 4.46E+04 3.96E+04 3.63E+04 3.15E+04 3.05E+04 2.94E+04 2.87E+04 2.82E+04 2.77E+04	

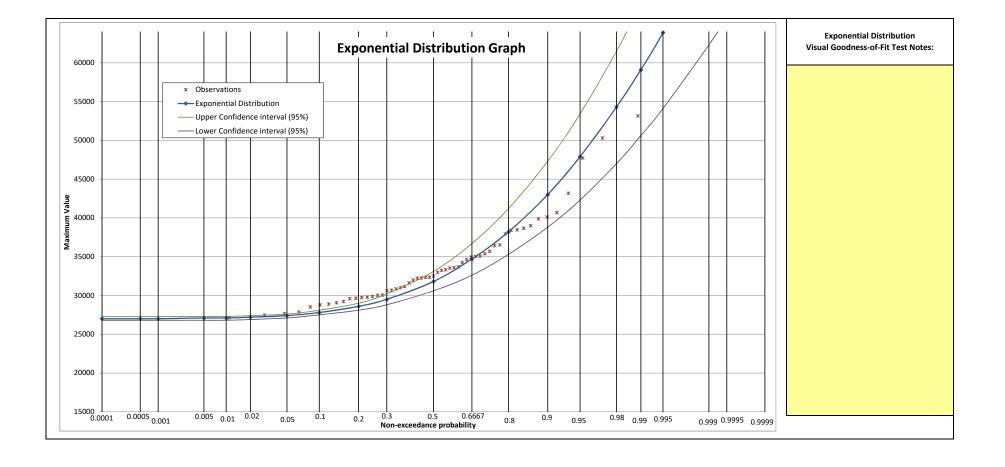
Exponential and P						
Exponential D	istribution					
Paste Exponential	Distribution Outp	out from Hyfran	in Cell Below (A142)			
Ascension Constru	icted Wetland					
Results of the fitti	ng					
E						
Exponential (Maxi	mum Likelihood)					
Number of observ	ations 55					
Parameters						
alpha	6959.8148	2				
m	27023.457	9				
Quantiles						
q = F(X) : non-exce	eedance probabili	ty				
T = 1/(1-q)						
	q	ХТ	Standard deviation	Confidence in	· · · · ·	
10000	0.9999	9.11E+04	8.71E+03	7.41E+04	1.08E+05	
10000 2000	0.9999 0.9995	9.11E+04 7.99E+04	8.71E+03 7.18E+03	7.41E+04 6.58E+04	1.08E+05 9.40E+04	
10000 2000 1000	0.9999 0.9995 0.999	9.11E+04 7.99E+04 7.51E+04	8.71E+03 7.18E+03 6.53E+03	7.41E+04 6.58E+04 6.23E+04	1.08E+05 9.40E+04 8.79E+04	
T 10000 2000 1000 200	0.9999 0.9995 0.999 0.999	9.11E+04 7.99E+04 7.51E+04 6.39E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04	
10000 2000 1000 200 100	0.9999 0.9995 0.999 0.995 0.995 0.99	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04	
10000 2000 1000 200 100 50	0.9999 0.9995 0.999 0.995 0.995 0.99 0.99	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04	
10000 2000 1000 200 100 50 20	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04	
10000 2000 1000 200 100 50 20 10	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04	
10000 2000 1000 200 100 50 20 10 5	0.9999 0.9995 0.999 0.995 0.99 0.99 0.98 0.95 0.9 0.9 0.9 0.9	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 4.12E+04	
10000 2000 1000 200 100 50 20 10 5 5 3	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.8 0.6667	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 4.12E+04 3.67E+04	
10000 2000 1000 200 100 50 20 10 5 3 2	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.9 0.8 0.6667 0.5	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 3.06E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 3.67E+04 3.31E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 2 1.4286	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.9 0.8 0.6667 0.5 0.3	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 4.12E+04 3.67E+04 3.31E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8 0.6667 0.5 0.3 0.2	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 3.06E+04 2.88E+04 2.81E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25 1.1111	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	9.11E+04 7.99E+04 7.51E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04 2.78E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 3.06E+04 2.88E+04 2.81E+04 2.75E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 3.67E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.81E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.9999 0.9995 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.95 0.9 0.9 0.9 0.9 0.9 0.3 0.2 0.1 0.05	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04 2.78E+04 2.74E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151 130	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04 2.88E+04 2.81E+04 2.75E+04 2.71E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 4.12E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.81E+04 2.76E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9999 0.9995 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.95 0.9 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04 2.78E+04 2.74E+04 2.72E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151 130 127	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04 2.81E+04 2.81E+04 2.75E+04 2.71E+04 2.69E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 4.12E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.81E+04 2.76E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9999 0.9995 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.95 0.9 0.9 0.9 0.3 0.2 0.1 0.05 0.02 0.01	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.78E+04 2.78E+04 2.72E+04 2.71E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151 130 127 127	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04 2.88E+04 2.81E+04 2.75E+04 2.71E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 4.12E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.81E+04 2.76E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.02 0.01 0.005	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04 2.78E+04 2.74E+04 2.72E+04 2.71E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151 130 127 127	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04 2.81E+04 2.81E+04 2.75E+04 2.71E+04 2.69E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.76E+04 2.73E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.9999 0.9995 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.95 0.9 0.9 0.9 0.3 0.2 0.1 0.05 0.02 0.01	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04 2.78E+04 2.72E+04 2.72E+04 2.71E+04 2.71E+04 2.70E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151 130 127 127 128	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04 2.88E+04 2.81E+04 2.75E+04 2.71E+04 2.69E+04 2.68E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.76E+04 2.73E+04 2.73E+04	
10000 2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9999 0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.02 0.01 0.005	9.11E+04 7.99E+04 7.51E+04 6.39E+04 5.91E+04 5.43E+04 4.79E+04 4.30E+04 3.82E+04 3.47E+04 3.18E+04 2.95E+04 2.86E+04 2.78E+04 2.74E+04 2.72E+04 2.71E+04	8.71E+03 7.18E+03 6.53E+03 5.00E+03 4.35E+03 3.69E+03 2.82E+03 2.17E+03 1.51E+03 1.03E+03 652 345 232 151 130 127 127	7.41E+04 6.58E+04 6.23E+04 5.41E+04 5.06E+04 4.70E+04 4.23E+04 3.88E+04 3.53E+04 3.26E+04 2.88E+04 2.81E+04 2.81E+04 2.75E+04 2.69E+04 2.68E+04 2.68E+04	1.08E+05 9.40E+04 8.79E+04 7.37E+04 6.76E+04 6.15E+04 5.34E+04 4.73E+04 3.67E+04 3.31E+04 3.02E+04 2.90E+04 2.76E+04 2.73E+04	

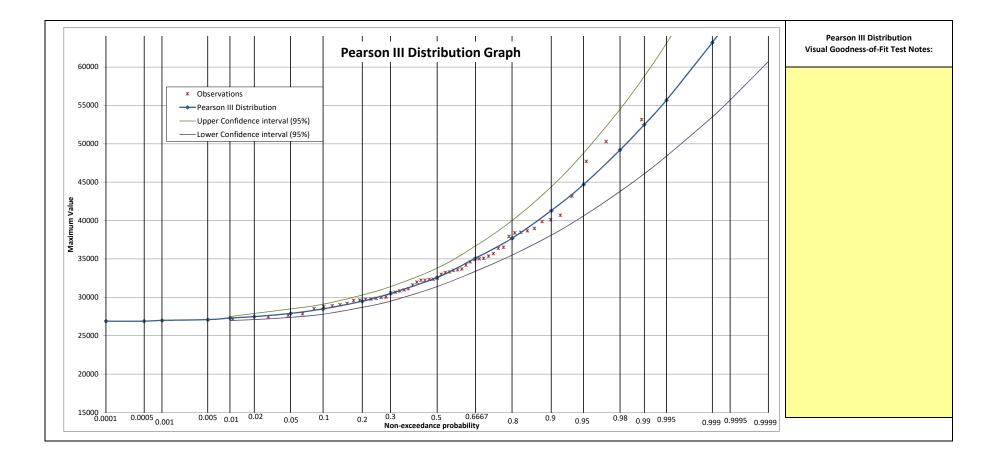
Deste Deersen III	e III Distribution		Coll Dolouy (A194)			
		t from Hyfran Ir	n Cell Below (A184)			
Ascension Constr	ucted Wetland					
Doculto of the fitt	ina					
Results of the fitt	ing					
Dearson tune III (Maximum Likelihoo	ad)				
Pearson type in (Juj				
Number of obser	wations 55					
Number of obser	vations 55					
Parameters						
alpha	0.000233					
lambda	1.640274					
m	26952.6051					
		_				
Quantiles						
	eedance probabilit	Y				
T = 1/(1-q)						
т	q	XT	Standard deviation	Confidence in	terval (95%)	
10000	0.9999	7.37E+04	6.63E+03	6.07E+04	8.67E+04	
2000	0.9995	6.64E+04	5.43E+03	5.57E+04	7.70E+04	
1000	0.999	6.32E+04	4.92E+03	5.35E+04	7.28E+04	
			2 745.02			
200	0.995	5.57E+04	3.74E+03	4.84E+04	6.31E+04	
200 100	0.995 0.99	5.57E+04 5.25E+04	3.24E+03 3.24E+03	4.84E+04 4.61E+04	6.31E+04 5.88E+04	
100 50 20	0.99 0.98 0.95	5.25E+04	3.24E+03	4.61E+04	5.88E+04	
100 50 20 10	0.99 0.98 0.95 0.9	5.25E+04 4.92E+04	3.24E+03 2.74E+03	4.61E+04 4.38E+04	5.88E+04 5.45E+04	
100 50 20	0.99 0.98 0.95	5.25E+04 4.92E+04 4.47E+04	3.24E+03 2.74E+03 2.09E+03	4.61E+04 4.38E+04 4.06E+04	5.88E+04 5.45E+04 4.88E+04	
100 50 20 10	0.99 0.98 0.95 0.9	5.25E+04 4.92E+04 4.47E+04 4.13E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03	4.61E+04 4.38E+04 4.06E+04 3.81E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04	
100 50 20 10 5	0.99 0.98 0.95 0.9 0.8 0.6667 0.5	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150	4.61E+04 4.38E+04 4.06E+04 3.81E+04 3.55E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04	
100 50 20 10 5 3	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852	4.61E+04 4.38E+04 4.06E+04 3.81E+04 3.55E+04 3.34E+04 3.14E+04 2.95E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04	
100 50 20 10 5 3 2	0.99 0.98 0.95 0.9 0.8 0.6667 0.5	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04 3.51E+04 3.26E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411	4.61E+04 4.38E+04 4.06E+04 3.81E+04 3.55E+04 3.34E+04 3.14E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04	
100 50 20 10 5 3 2 1.4286	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04 2.85E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337	4.61E+04 4.38E+04 4.06E+04 3.81E+04 3.55E+04 3.34E+04 3.14E+04 2.95E+04 2.87E+04 2.78E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04 2.91E+04	
100 50 20 10 5 3 2 1.4286 1.25	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.1 0.05	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337 273	4.61E+04 4.38E+04 4.06E+04 3.81E+04 3.55E+04 3.34E+04 3.14E+04 2.95E+04 2.87E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04	
100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04 2.85E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337	4.61E+04 4.38E+04 4.06E+04 3.81E+04 3.55E+04 3.34E+04 3.14E+04 2.95E+04 2.87E+04 2.78E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04 2.91E+04	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.1 0.05	5.25E+04 4.92E+04 4.47E+04 4.13E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04 2.85E+04 2.79E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337 273 1.91E+02 1.23E+02	4.61E+04 4.38E+04 3.81E+04 3.55E+04 3.34E+04 3.34E+04 2.95E+04 2.87E+04 2.78E+04 2.74E+04 2.71E+04 2.70E+04	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04 2.91E+04 2.85E+04 2.79E+04 2.75E+04	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	5.25E+04 4.92E+04 4.47E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04 2.85E+04 2.79E+04 2.75E+04 2.73E+04 2.73E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337 273 1.91E+02 1.23E+02 N/D	4.61E+04 4.38E+04 3.81E+04 3.55E+04 3.34E+04 3.34E+04 2.95E+04 2.75E+04 2.78E+04 2.74E+04 2.71E+04 2.71E+04 2.70E+04 N/D	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04 2.91E+04 2.79E+04 2.79E+04 2.75E+04 N/D	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	5.25E+04 4.92E+04 4.47E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04 2.85E+04 2.79E+04 2.75E+04 2.73E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337 273 1.91E+02 1.23E+02 N/D N/D	4.61E+04 4.38E+04 3.81E+04 3.55E+04 3.34E+04 3.34E+04 2.95E+04 2.75E+04 2.77E+04 2.74E+04 2.71E+04 2.70E+04 N/D N/D	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04 2.91E+04 2.79E+04 2.75E+04 N/D N/D	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.05 0.01 0.005	5.25E+04 4.92E+04 4.47E+04 3.77E+04 3.51E+04 3.26E+04 3.05E+04 2.95E+04 2.85E+04 2.79E+04 2.75E+04 2.73E+04 2.73E+04	3.24E+03 2.74E+03 2.09E+03 1.61E+03 1150 852 625 472 411 337 273 1.91E+02 1.23E+02 N/D	4.61E+04 4.38E+04 3.81E+04 3.55E+04 3.34E+04 3.34E+04 2.95E+04 2.75E+04 2.78E+04 2.74E+04 2.71E+04 2.71E+04 2.70E+04 N/D	5.88E+04 5.45E+04 4.88E+04 4.44E+04 4.00E+04 3.67E+04 3.38E+04 3.14E+04 3.03E+04 2.91E+04 2.79E+04 2.79E+04 2.75E+04 N/D	

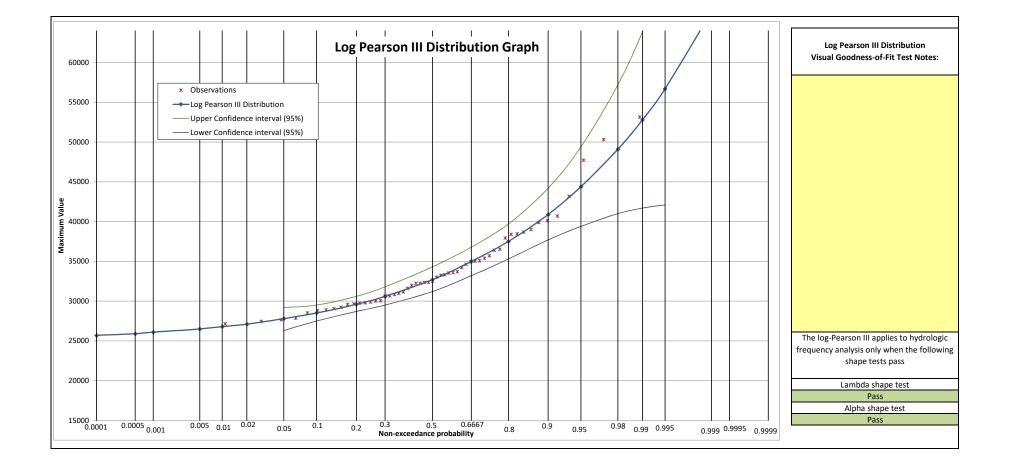

Paste Log Pearso	Type III Distrib		an in Cell Below (A226)			
Ascension Constr						
Results of the fitt	ing					
Log-Pearson type	e III (Méthode SAM)				
Number of obser	vations 55					
_						
Parameters		_				
alpha	29.262087					
lambda	3.518463					
m	4.406031					
Quantilat						
Quantiles	andanco probabili	h. /				
	eedance probabili	ly				
T = 1/(1-q)						
т	q	ХТ	Standard deviation	Confidence in	terval (95%)	
10000	0.9999	8.27E+04	2.33E+04	N/D	N/D	
2000	0.9995	7.11E+04	1.55E+04	N/D	N/D	
1000	0.999	6.65E+04	1.27E+04	N/D	N/D	
		5.67E+04	7.45E+03			
200	0.995	5.0/E+04		4.21E+04	7.13E+04	
200 100	0.995 0.99	5.28E+04	5.66E+03	4.21E+04 4.17E+04	7.13E+04 6.39E+04	
100	0.99	5.28E+04	5.66E+03	4.17E+04	6.39E+04	
100 50	0.99 0.98	5.28E+04 4.91E+04	5.66E+03 4.14E+03	4.17E+04 4.10E+04	6.39E+04 5.72E+04	
100 50 20	0.99 0.98 0.95	5.28E+04 4.91E+04 4.44E+04	5.66E+03 4.14E+03 2.53E+03	4.17E+04 4.10E+04 3.94E+04	6.39E+04 5.72E+04 4.94E+04	
100 50 20 10	0.99 0.98 0.95 0.9	5.28E+04 4.91E+04 4.44E+04 4.09E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03	4.17E+04 4.10E+04 3.94E+04 3.77E+04	6.39E+04 5.72E+04 4.94E+04 4.42E+04	
100 50 20 10 5	0.99 0.98 0.95 0.9 0.9 0.8	5.28E+04 4.91E+04 4.44E+04 4.09E+04 3.75E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04	6.39E+04 5.72E+04 4.94E+04 4.42E+04 3.97E+04	
100 50 20 10 5 3	0.99 0.98 0.95 0.9 0.8 0.8 0.6667	5.28E+04 4.91E+04 4.44E+04 4.09E+04 3.75E+04 3.50E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04	6.39E+04 5.72E+04 4.94E+04 4.42E+04 3.97E+04 3.68E+04	
100 50 20 10 5 3 2	0.99 0.98 0.95 0.9 0.8 0.6667 0.5	5.28E+04 4.91E+04 4.44E+04 3.75E+04 3.50E+04 3.27E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04	6.39E+04 5.72E+04 4.94E+04 4.39E+04 3.97E+04 3.68E+04 3.43E+04	
100 50 20 10 5 3 2 1.4286	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	5.28E+04 4.91E+04 4.44E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478 516	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04	6.39E+04 5.72E+04 4.94E+04 4.39E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04	
100 50 20 10 5 3 2 1.4286 1.25	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	5.28E+04 4.91E+04 4.44E+04 4.09E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04 2.96E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04 2.87E+04	6.39E+04 5.72E+04 4.94E+04 4.42E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04 3.06E+04	
100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	5.28E+04 4.91E+04 4.91E+04 4.09E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04 2.96E+04 2.85E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478 516	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04 2.87E+04 2.75E+04	6.39E+04 5.72E+04 4.94E+04 4.42E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04 3.06E+04 2.95E+04 2.92E+04 N/D	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	5.28E+04 4.91E+04 4.91E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04 2.96E+04 2.85E+04 2.78E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478 516 746	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04 2.87E+04 2.75E+04 2.63E+04	6.39E+04 5.72E+04 4.94E+04 4.42E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04 3.06E+04 2.95E+04 2.92E+04	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	5.28E+04 4.91E+04 4.44E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04 2.96E+04 2.85E+04 2.78E+04 2.78E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478 516 746 1090	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04 2.87E+04 2.75E+04 2.63E+04 N/D	6.39E+04 5.72E+04 4.94E+04 4.42E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04 3.06E+04 2.95E+04 2.92E+04 N/D	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	5.28E+04 4.91E+04 4.44E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04 2.96E+04 2.85E+04 2.78E+04 2.71E+04 2.68E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478 516 746 1090 1340	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04 2.87E+04 2.63E+04 2.63E+04 N/D N/D	6.39E+04 5.72E+04 4.94E+04 4.39E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04 3.06E+04 2.95E+04 2.92E+04 N/D N/D	
100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	5.28E+04 4.91E+04 4.44E+04 3.75E+04 3.50E+04 3.27E+04 3.06E+04 2.96E+04 2.85E+04 2.78E+04 2.71E+04 2.68E+04 2.65E+04	5.66E+03 4.14E+03 2.53E+03 1.65E+03 1.11E+03 908 781 586 478 516 746 1090 1340 1560	4.17E+04 4.10E+04 3.94E+04 3.77E+04 3.53E+04 3.32E+04 3.12E+04 2.95E+04 2.87E+04 2.63E+04 N/D N/D N/D N/D	6.39E+04 5.72E+04 4.94E+04 4.39E+04 3.97E+04 3.68E+04 3.43E+04 3.18E+04 3.06E+04 2.95E+04 2.92E+04 N/D N/D N/D	

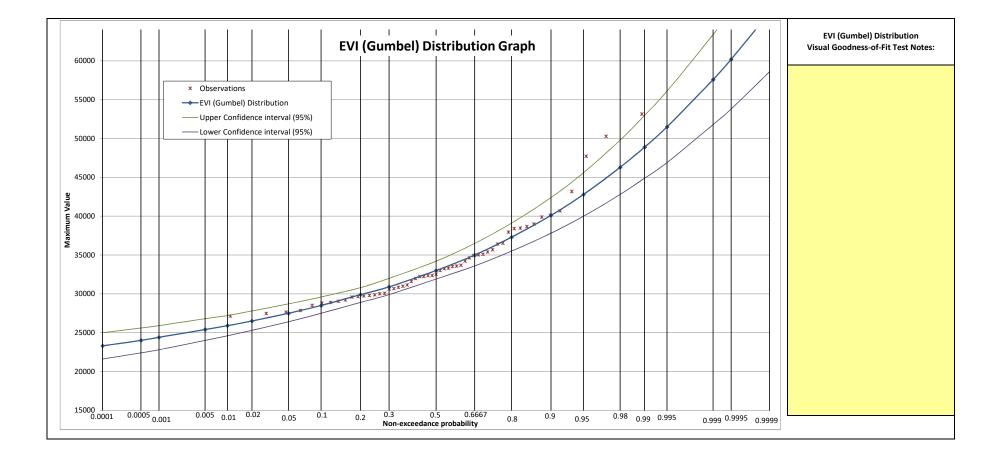

•) Distribution					
	ution Output from Hy	yfran in Cell Be	elow (A269)			
Ascension Const	ructed Wetland					
Results of the fit	ting					
Results of the fit	ung					
Gumbel (Maxim	um Likelihood)					
N						
Number of obse	rvations 55					
Parameters						
u	31640.2378					
alpha	3756.73015					
Quantiles						
q = F(X) : non-ex	ceedance probability	/				
T = 1/(1-q)						
Т	q	ХТ	Standard deviation	Confidence in		
10000	0.9999	6.62E+04	3.89E+03	5.86E+04	7.39E+04	
2000	0.9995	6.02E+04	3.25E+03	5.38E+04	6.66E+04	
10000 2000 1000	0.9995 0.999		3.25E+03 2.97E+03	5.38E+04 5.18E+04	6.66E+04 6.34E+04	
2000	0.9995 0.999 0.995	6.02E+04				
2000 1000 200 100	0.9995 0.999 0.995 0.995	6.02E+04 5.76E+04 5.15E+04 4.89E+04	2.97E+03	5.18E+04 4.69E+04 4.49E+04	6.34E+04 5.61E+04 5.30E+04	
2000 1000 200 100 50	0.9995 0.999 0.995 0.99 0.99 0.99	6.02E+04 5.76E+04 5.15E+04	2.97E+03 2.34E+03	5.18E+04 4.69E+04	6.34E+04 5.61E+04	
2000 1000 200 100 50 20	0.9995 0.999 0.995 0.99 0.99 0.98 0.95	6.02E+04 5.76E+04 5.15E+04 4.89E+04	2.97E+03 2.34E+03 2.07E+03	5.18E+04 4.69E+04 4.49E+04	6.34E+04 5.61E+04 5.30E+04	
2000 1000 200 100 50 20 10	0.9995 0.999 0.995 0.99 0.98 0.95 0.9	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03	5.18E+04 4.69E+04 4.49E+04 4.28E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04	
2000 1000 200 100 50 20 10 5	0.9995 0.999 0.995 0.99 0.99 0.98 0.95	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.28E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04	
2000 1000 200 100 50 20 10 5 3	0.9995 0.999 0.995 0.99 0.98 0.95 0.9	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.28E+04 4.01E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04 3.78E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04	
2000 1000 200 100 50 20 10 5	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.9 0.8	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.28E+04 4.01E+04 3.73E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04 3.78E+04 3.55E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04	
2000 1000 200 100 50 20 10 5 3	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.28E+04 4.01E+04 3.73E+04 3.50E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04 3.78E+04 3.55E+04 3.36E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04	
2000 1000 200 100 50 20 10 5 3 3 2	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5	6.02E+04 5.76E+04 4.89E+04 4.63E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04	
2000 1000 200 100 50 20 10 5 3 3 2 1.4286	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	6.02E+04 5.76E+04 4.89E+04 4.63E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04 3.09E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04	
2000 1000 200 100 50 20 10 5 5 3 2 1.4286 1.4286 1.25 1.1111	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	6.02E+04 5.76E+04 4.89E+04 4.63E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.09E+04 2.99E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514 507	5.18E+04 4.69E+04 4.49E+04 4.28E+04 4.00E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04 2.89E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04 3.08E+04	
2000 1000 200 100 50 20 10 5 3 2 2 1.4286 1.25 1.1111 1.0526	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	6.02E+04 5.76E+04 4.89E+04 4.63E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04 2.99E+04 2.85E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514 507 535	5.18E+04 4.69E+04 4.28E+04 4.28E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04 2.89E+04 2.75E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04 3.08E+04 2.96E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.1 0.05	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04 3.09E+04 2.99E+04 2.85E+04 2.75E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514 507 535 578	5.18E+04 4.69E+04 4.28E+04 4.28E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04 2.89E+04 2.75E+04 2.64E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04 3.08E+04 2.96E+04 2.87E+04	
2000 1000 200 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04 3.309E+04 2.85E+04 2.75E+04 2.65E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514 507 535 578 636	5.18E+04 4.69E+04 4.28E+04 4.28E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04 2.89E+04 2.75E+04 2.64E+04 2.53E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04 3.08E+04 2.96E+04 2.87E+04 2.78E+04	
2000 1000 200 100 50 20 10 5 3 3 2 1.4286 1.25	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.95 0.9 0.9 0.9 0.3 0.2 0.1 0.05 0.02 0.01	6.02E+04 5.76E+04 5.15E+04 4.89E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04 2.99E+04 2.85E+04 2.65E+04 2.59E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514 507 535 578 636 636 678	5.18E+04 4.69E+04 4.28E+04 4.28E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04 2.89E+04 2.64E+04 2.53E+04 2.53E+04 2.46E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04 3.08E+04 2.96E+04 2.87E+04 2.78E+04 2.72E+04	
2000 1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.9995 0.999 0.995 0.99 0.98 0.95 0.9 0.95 0.9 0.9 0.9 0.3 0.2 0.1 0.05 0.02 0.01 0.005	6.02E+04 5.76E+04 4.89E+04 4.63E+04 4.63E+04 4.01E+04 3.73E+04 3.50E+04 3.30E+04 3.309E+04 2.99E+04 2.85E+04 2.55E+04 2.59E+04 2.54E+04	2.97E+03 2.34E+03 2.07E+03 1.80E+03 1.44E+03 1.18E+03 916 729 593 514 507 535 578 636 636 678 716	5.18E+04 4.69E+04 4.28E+04 4.28E+04 3.78E+04 3.55E+04 3.36E+04 3.19E+04 2.99E+04 2.89E+04 2.75E+04 2.64E+04 2.53E+04 2.46E+04 2.40E+04	6.34E+04 5.61E+04 5.30E+04 4.98E+04 4.56E+04 4.24E+04 3.91E+04 3.65E+04 3.42E+04 3.20E+04 2.96E+04 2.87E+04 2.78E+04 2.72E+04 2.68E+04	

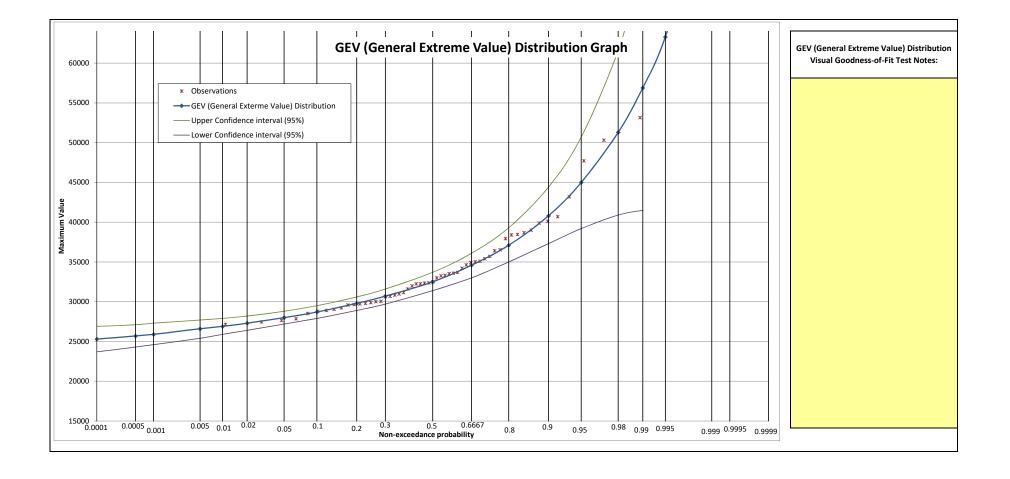

GEV (General	Extreme Valu	e) Distributi	on			
Paste GEV Distrib	ution Output from	Hyfran in Cell E	Below (A311)			
Ascension Constru	ucted Wetland					
Results of the fitti	ing					
GEV (Maximum Li	ikelihood)					
Number of observ	vations 55					
Parameters						
alpha	3342.8699					
k	-0.205787					
u	31273.7257	7				
q = F(X) : non-exc T = 1/(1-q)	eedance probabilit	ty XT	Standard deviation	Confidence in		
10000	q 0.9999	1.23E+05	6.00E+04	N/D	N/D	
10000						
2000	0 9995	9 27F+04	3 21F+04	N/D	N/D	
	0.9995	9.27E+04 8.23E+04	3.21E+04 2.39E+04	N/D N/D	N/D N/D	
1000	0.999	8.23E+04	2.39E+04	N/D	N/D	
1000 200		8.23E+04 6.33E+04	2.39E+04 1.13E+04	N/D N/D		
1000 200 100	0.999 0.995 0.99	8.23E+04 6.33E+04 5.69E+04	2.39E+04 1.13E+04 7.85E+03	N/D N/D 4.15E+04	N/D N/D	
1000 200 100 50	0.999 0.995	8.23E+04 6.33E+04 5.69E+04 5.13E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03	N/D N/D 4.15E+04 4.09E+04	N/D N/D 7.23E+04 6.16E+04	
2000 1000 200 100 50 20 10	0.999 0.995 0.99 0.98	8.23E+04 6.33E+04 5.69E+04	2.39E+04 1.13E+04 7.85E+03	N/D N/D 4.15E+04	N/D N/D 7.23E+04	
1000 200 100 50 20 10	0.999 0.995 0.99 0.98 0.98 0.95	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03	N/D N/D 4.15E+04 4.09E+04 3.92E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04	
1000 200 100 50 20	0.999 0.995 0.99 0.98 0.95 0.9	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 4.08E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04	
1000 200 100 50 20 10 5 3	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 4.08E+04 3.71E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04	
1000 200 100 50 20 10 5 3 2 2	0.999 0.995 0.99 0.98 0.95 0.9 0.9 0.8 0.6667	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 4.08E+04 3.71E+04 3.46E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04	
1000 200 100 50 20 10 5 3 2 2 1.4286	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 4.08E+04 3.71E+04 3.46E+04 3.25E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.89E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04	
1000 200 100 50 20 10 55 3 2 1.4286 1.4286	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 4.08E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04 2.98E+04 2.87E+04 2.80E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470 422	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.89E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04 3.06E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.1 0.05 0.02	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 4.08E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04 2.98E+04 2.87E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470 422 399	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.89E+04 2.79E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04 3.06E+04 2.95E+04 2.88E+04 2.82E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.1 0.05	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04 2.98E+04 2.87E+04 2.80E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470 422 399 418	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.79E+04 2.79E+04 2.72E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04 3.06E+04 2.95E+04 2.88E+04 2.82E+04 2.79E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04 2.98E+04 2.87E+04 2.80E+04 2.73E+04 2.69E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470 422 399 418 472	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.79E+04 2.72E+04 2.64E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04 2.95E+04 2.88E+04 2.82E+04 2.77E+04	
1000 200 100 50 20 10 5 3	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 3.71E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04 2.98E+04 2.80E+04 2.73E+04 2.69E+04 2.66E+04 2.59E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470 422 399 418 472 519 5.68E+02 6.76E+02	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.79E+04 2.79E+04 2.64E+04 2.59E+04 2.59E+04 2.54E+04 2.46E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04 3.06E+04 2.95E+04 2.88E+04 2.82E+04 2.79E+04	
1000 200 100 50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.999 0.995 0.99 0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005	8.23E+04 6.33E+04 5.69E+04 5.13E+04 4.50E+04 3.71E+04 3.46E+04 3.25E+04 3.07E+04 2.98E+04 2.87E+04 2.80E+04 2.73E+04 2.69E+04	2.39E+04 1.13E+04 7.85E+03 5.28E+03 2.95E+03 1820 1110 790 605 470 422 399 418 472 519 5.68E+02	N/D N/D 4.15E+04 4.09E+04 3.92E+04 3.73E+04 3.50E+04 3.30E+04 3.14E+04 2.97E+04 2.79E+04 2.79E+04 2.64E+04 2.59E+04 2.54E+04	N/D N/D 7.23E+04 6.16E+04 5.07E+04 4.44E+04 3.93E+04 3.61E+04 3.37E+04 3.16E+04 2.95E+04 2.88E+04 2.82E+04 2.77E+04	

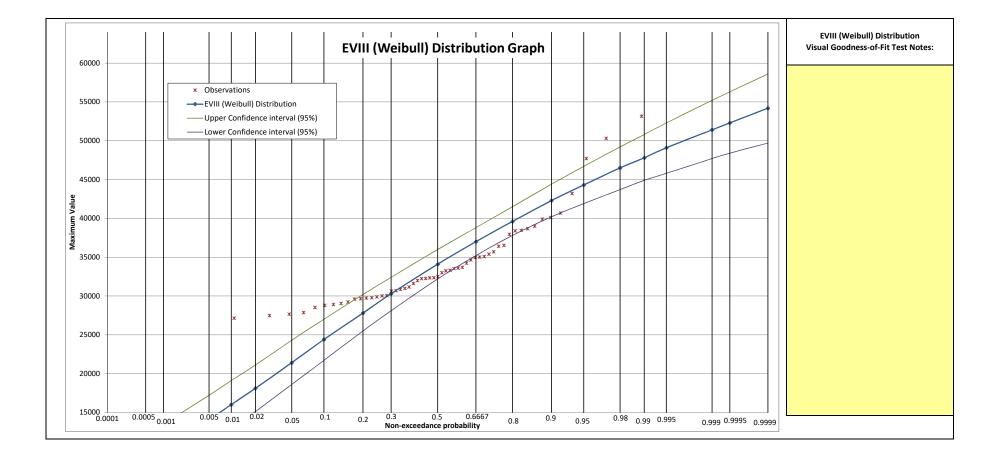

Paste Weibull D	istribution Output fr	om Hyfran in C	ell Below (A353)			
Ascension Const	tructed Wetland					
Results of the fit	tting					
Weibull (Maxim	um Likelihood)					
Number of obse	ervations 55					
Parameters						
alpha	36412.5819)				
с	5.594443					
Quantiles q = F(X) : non-ex T = 1/(1-q)	ceedance probabilit	ý				
Т	q	ХТ	Standard deviation	Confidence in	terval (95%)	
10000	0.9999	5.42E+04	2.25E+03	4.97E+04	5.86E+04	
2000	0.9995	5.23E+04	2.02E+03	4.84E+04	5.63E+04	
1000	0.999	5.14E+04	1.91E+03	4.77E+04	5.52E+04	
200	0.995	4.91E+04	1.65E+03	4.58E+04	5.23E+04	
100	0.99	4.78E+04	1.52E+03	4.49E+04	5.08E+04	
	0.00	4.65E+04	1.39E+03	4.37E+04	4.92E+04	
	0.98		1.21E+03	4.19E+04	4 675,04	
	0.98	4.43E+04	1.21E+03	4.196+04	4.67E+04	
20		4.43E+04 4.23E+04	1.07E+03	4.02E+04	4.44E+04	
	0.95					
20 10 5	0.95 0.9	4.23E+04	1.07E+03	4.02E+04	4.44E+04	
20 10 5 3	0.95 0.9 0.8	4.23E+04 3.96E+04	1.07E+03 956	4.02E+04 3.78E+04	4.44E+04 4.15E+04	
20 10 5 3 2	0.95 0.9 0.8 0.6667	4.23E+04 3.96E+04 3.70E+04	1.07E+03 956 921	4.02E+04 3.78E+04 3.52E+04	4.44E+04 4.15E+04 3.88E+04	
20 10 5 3 2 1.4286	0.95 0.9 0.8 0.6667 0.5	4.23E+04 3.96E+04 3.70E+04 3.41E+04	1.07E+03 956 921 965	4.02E+04 3.78E+04 3.52E+04 3.22E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04	
20 10 5 3 2 1.4286 1.25	0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04	1.07E+03 956 921 965 1100	4.02E+04 3.78E+04 3.52E+04 3.22E+04 2.81E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04	
20 10 5 3 2 1.4286 1.25 1.1111	0.95 0.9 0.8 0.6667 0.5 0.3 0.2	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04 2.78E+04 2.44E+04 2.14E+04	1.07E+03 956 921 965 1100 1210	4.02E+04 3.78E+04 3.52E+04 3.22E+04 2.81E+04 2.55E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04 3.02E+04	
20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04 2.78E+04 2.44E+04	1.07E+03 956 921 965 1100 1210 1360	4.02E+04 3.78E+04 3.52E+04 3.22E+04 2.81E+04 2.55E+04 2.17E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04 3.02E+04 2.70E+04	
20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04 2.78E+04 2.44E+04 2.14E+04	1.07E+03 956 921 965 1100 1210 1360 1460	4.02E+04 3.78E+04 3.52E+04 3.22E+04 2.81E+04 2.55E+04 2.17E+04 1.86E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04 3.02E+04 2.70E+04 2.43E+04	
20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04 2.78E+04 2.44E+04 2.14E+04 1.81E+04	1.07E+03 956 921 965 1100 1210 1360 1460 1540	4.02E+04 3.78E+04 3.52E+04 3.22E+04 2.81E+04 2.55E+04 2.17E+04 1.86E+04 1.51E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04 3.02E+04 2.70E+04 2.43E+04 2.11E+04	
5 3	0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04 2.78E+04 2.44E+04 2.14E+04 1.81E+04 1.60E+04	1.07E+03 956 921 965 1100 1210 1360 1460 1540 1560	4.02E+04 3.78E+04 3.52E+04 3.22E+04 2.81E+04 2.55E+04 2.17E+04 1.86E+04 1.51E+04 1.29E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04 3.02E+04 2.70E+04 2.43E+04 2.11E+04 1.91E+04	
20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.01 0.005	4.23E+04 3.96E+04 3.70E+04 3.41E+04 3.03E+04 2.78E+04 2.44E+04 2.14E+04 1.81E+04 1.60E+04 1.41E+04	1.07E+03 956 921 965 1100 1210 1360 1460 1540 1560 1560	4.02E+04 3.78E+04 3.52E+04 2.81E+04 2.55E+04 2.17E+04 1.86E+04 1.51E+04 1.29E+04 1.11E+04	4.44E+04 4.15E+04 3.88E+04 3.60E+04 3.24E+04 3.02E+04 2.70E+04 2.43E+04 2.11E+04 1.91E+04 1.72E+04	


Gamma type of	distributions:					
Gamma Dist	ribution					
Paste Gamma Di	stribution Output fr	om Hyfran in C	ell Below (A396)			
Ascension Const	ructed Wetland					
Results of the fit	ting					
Gamma (Maximi	um Likelihood)					
Number of shore						
Number of obser	rvations 55					
Parameters						
alpha	0.001284	7				
lambda	43.643041	_				
	1.0.0.00.12	-				
Quantiles						
q = F(X) : non-ex	ceedance probabilit	У				
T = 1/(1-q)						
Т	q	ХТ	Standard deviation	Confidence in		
10000	0.9999	5.65E+04	2.73E+03	5.12E+04	6.19E+04	
2000	0.9995	5.35E+04	2.37E+03	4.89E+04	5.81E+04	
1000	0.999	5.21E+04	2.21E+03	4.78E+04	5.65E+04	
200	0.995	4.87E+04	1.83E+03	4.51E+04	5.23E+04	
100	0.99	4.71E+04	1.66E+03	4.38E+04	5.03E+04	
				4.25E+04		
50	0.98	4.54E+04	1.48E+03		4.83E+04	
50 20	0.98 0.95	4.29E+04	1.24E+03	4.04E+04	4.53E+04	
50 20 10	0.98 0.95 0.9	4.29E+04 4.07E+04	1.24E+03 1.06E+03	4.04E+04 3.86E+04	4.53E+04 4.28E+04	
50 20 10 5	0.98 0.95 0.9 0.8	4.29E+04 4.07E+04 3.82E+04	1.24E+03 1.06E+03 873	4.04E+04 3.86E+04 3.65E+04	4.53E+04 4.28E+04 3.99E+04	
50 20 10 5 3	0.98 0.95 0.9 0.8 0.6667	4.29E+04 4.07E+04 3.82E+04 3.60E+04	1.24E+03 1.06E+03 873 755	4.04E+04 3.86E+04 3.65E+04 3.45E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04	
50 20 10 5 3 2	0.98 0.95 0.9 0.8 0.6667 0.5	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04	1.24E+03 1.06E+03 873 755 690	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04	
50 20 10 5 3 2 1.4286	0.98 0.95 0.9 0.8 0.6667 0.5 0.3	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04	1.24E+03 1.06E+03 873 755 690 697	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04	
50 20 10 5 3 2 1.4286 1.25	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04	1.24E+03 1.06E+03 873 755 690 697 736	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04	1.24E+03 1.06E+03 873 755 690 697 736 815	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04 2.60E+04	1.24E+03 1.06E+03 873 755 690 697 736 815 891	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04 2.42E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04 2.77E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04 2.60E+04 2.43E+04	1.24E+03 1.06E+03 873 755 690 697 736 815 891 977	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04 2.42E+04 2.23E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04 2.77E+04 2.62E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04 2.60E+04 2.43E+04 2.32E+04	1.24E+03 1.06E+03 873 755 690 697 736 815 891 977 1030	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04 2.42E+04 2.23E+04 2.11E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04 2.77E+04 2.62E+04 2.52E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01 0.005	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04 2.60E+04 2.43E+04 2.32E+04 2.22E+04	1.24E+03 1.06E+03 873 755 690 697 736 815 891 977 1030 1080	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04 2.42E+04 2.23E+04 2.11E+04 2.01E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04 2.77E+04 2.62E+04 2.52E+04 2.43E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101 1.005 1.001	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04 2.60E+04 2.60E+04 2.32E+04 2.22E+04 2.03E+04	1.24E+03 1.06E+03 873 755 690 697 736 815 891 977 1030 1080 1160	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04 2.42E+04 2.23E+04 2.11E+04 2.01E+04 1.80E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04 2.77E+04 2.62E+04 2.52E+04 2.43E+04 2.26E+04	
50 20 10 5 3 2 1.4286 1.25 1.1111 1.0526 1.0204 1.0101	0.98 0.95 0.9 0.8 0.6667 0.5 0.3 0.2 0.1 0.05 0.02 0.02 0.01 0.005	4.29E+04 4.07E+04 3.82E+04 3.60E+04 3.37E+04 3.11E+04 2.96E+04 2.76E+04 2.60E+04 2.43E+04 2.32E+04 2.22E+04	1.24E+03 1.06E+03 873 755 690 697 736 815 891 977 1030 1080	4.04E+04 3.86E+04 3.65E+04 3.45E+04 3.24E+04 2.97E+04 2.82E+04 2.60E+04 2.42E+04 2.23E+04 2.11E+04 2.01E+04	4.53E+04 4.28E+04 3.99E+04 3.75E+04 3.51E+04 3.25E+04 3.10E+04 2.92E+04 2.77E+04 2.62E+04 2.52E+04 2.43E+04	









			Numerical Te	sts		
					Choose Significance Level (alpha) :	5%
1) Anderson-Darling Test (1952)						
$A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \cdot [\ln n]$	$F(X_i) + \ln(1 - F(X_i))$	(n-i+1))]		H0= Data follows sp HA= Data does not f	ecified distribution ollow the specified distribution	
Distribution Type:	Critical Value at 10%	Critical Value at 5%	Critical Value at 1%	A2	Hypothesis	Rank (1 = best fit)
Normal	1.929	2.502	3.907	1.867	Accept H0	9
Lognormal	1.929	2.502	3.907	1.057	Accept H0	6
Lognormal III	1.929	2.502	3.907	0.126	Accept H0	1
Exponential	1.929	2.502	3.907	1.471	Accept H0	8
Pearson III	1.929	2.502	3.907	0.164	Accept H0	4
Log Pearson III	1.929	2.502	3.907	0.138	Accept H0	2
Gumbel	1.929	2.502	3.907	0.359	Accept H0	5
GEV	1.929	2.502	3.907	0.143	Accept H0	3
Weibull	1.929	2.502	3.907	3.097	Reject H0	10
Gamma	1.929	2.502	3.907	1.299	Accept H0	7
	*Critical values based or	n values calculated by E	asyFit Software			
2) Kolmogorov-Smirnov Test (1933)						
$F_n(x) = \frac{1}{n} \cdot \left[\text{Number of o} \right]$	bservations $\leq x$	$D_n = \sup_{x} F_n(x) = \sum_{x} F_n(x) $	(x)-F(x)	H0= Data follows sp HA= Data does not f	ecified distribution ollow the specified distribution	
Distribution Type:	Critical Value at 10%	Critical Value at 5%	Critical Value at 1%	Dn	Hypothesis	Rank (1 = best fit)
Normal	0.165	0.183	0.220	0.120	Accept H0	8
Lognormal	0.165	0.183	0.220	0.092	Accept H0	6
Lognormal III	0.165	0.183	0.220	0.054	Accept H0	4
Exponential	0.165	0.183	0.220	0.145	Accept H0	9
Pearson III	0.165	0.183	0.220	0.049	Accept H0	2
Log Pearson III	0.165	0.183	0.220	0.044	Accept H0	1
Gumbel	0.165	0.183	0.220	0.055	Accept H0	5
GEV	0.165	0.183	0.220	0.052	Accept H0	3
Weibull	0.165	0.183	0.220	0.176	Accept H0	10
Gamma	0.165	0.183	0.220	0.102	Accept H0	7

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2- February 2014

quares Ranking				NOTES
Distribution Type:	Standard Error	Rank	n	 For a detailed description of the Numerical Goodness of Fit Tests please refer to Section 4.3 of the Frequency Analysis Procedure for
Normal	2065	9	$SF = \frac{1}{\sum (x - y)^2}$	Stromwater Design Manual
Lognormal	1606	7	$SE_j = \left \frac{1}{n-m_j} \sum_{i=1}^{j} (x_i - y_i)^2 \right $	- For guidance on choosing the significance level value please refer t
Lognormal III	590	1	N III	Section 2.2.2.6 of the Frequency Analysis Procedure for Stromwate
Exponential	1361	6	1	Design Manual
Pearson III	677	3	1	
Log Pearson III	655	2	1	
Gumbel	1253	5	1	
GEV	683	4		
Weibull	3114	10		
Gamma	1740	8		

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

Sampling and Distribution Uncertainty NOTES - Select the distribution type and a return period based on the preferred curve from the Summary Sheet. - The sample uncertainty, distribution uncertainty and total uncertainty for the value will be displayed on the right. For more information regarding uncertainty please refer to Section 4.4 of the Frequency Analysis Procedure for Stormwater Design Manual - The plot below displays all the distributions input in the Frequency Analysis Input Tab Return Period of Interest (Years) Sampling Uncertainty at (95%) Confidence Interval ± 1700 5 Distribution Type Distribution Uncertainty ± 138 Normal Corresponding Value 38600 Total Uncertainty ± 1840 1 1 Observations **Distributions Graph** -Normal Distribution 60000 Log Normal Distribution Log Normal III Distribution 55000 Exponential Distribution Pearson Type III Distribution 50000 - Log Pearson Type III Distribution Gumbel Distribution 45000 GEV Distribution Maximum Value 40000 32000 Weibull Distribution Gamma Distribution User Defined Distribution 35000 30000 25000 20000 15000 0.0005 0.001 0.005 0.01 0.02 0.1 0.3 0.5 0.6667 0.98 0.99 0.995 0.998 0.999 0.9995 0.2 0.9 0.05 0.8 0.95 0.9999 Non-exceedance probability

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

				Si	ummary Sheet			
		Initial Statistical	Tests:					Project Information
		Tests for Station	arity					
	Test		Result		Project Name:		Ascension Develop	oment
Spearman Rank Order Correlati			No Significant Trend at 0.05 Significance Level					
Mann-Whitney Test for jump (a		U test)	No Jump at 0.05 Significance Level		Project Description:		Residential Develo	ppment - Constructed Wetland
Wald-Wolfowitz Test (The runs	test)		No Jump at 0.05 Significance Level					
		Tasta fan Hannan	ia					
	Test	Tests for Homoge	Result					
Mann-Whitney Test for jump (a		L tost)	Sample is Homogeneous at 0.05 Significance Level					
Terry Test	I.K.a. Walli-Willing		Sample is Homogeneous at 0.05 Significance Level					
			Sample is nonogeneous at 0.05 Significance Level					
		Tests for Indepen	dence		Location:		Rocky View Count	у
	Test		Result					
Spearman Rank Order Correlati	on Coefficient		Data is independent at 0.05 Significance Level		Date:		2022-10-01	
Wald-Wolfowitz Test for Indepe	endence		Data is independent at 0.05 Significance Level					
Anderson Test			Data is independent at 0.05 Significance Level		Designed by:		Luis Gerardo Narv	aez
				ł	• •			
	T 4	Test for Outlie			Company Name:		LGN Consulting En	gineering Lta.
	Test		Result		Devidence of here			
Grubbs and Beck Test for Outlie	ers		Lick Outline May Do Drosont		Reviewed by:		-	
Are any high outliers present? Are and low outliers present?			High Outlier May Be Present					
Are and low outliers present?			No Low Outliers Present	l				
				Numerical	Goodness-of-fit Tests Result			
				Numerical C	Joouness-or-nt rests Resum	.3		
						Numerical G	odness-of-fit Tests	
		Numerical Good	Iness-of-fit Tests from Spreadsheet				n Hyfran	
Distribution Tune		Numerical Good	iness-or-int rests from spreadsneet	Auguana of Daulus	Ranking from Numerical		it by user)	Notes from Visual Goodness-of-fit Test
Distribution Type				Average of Ranks	Tests	(inp	it by user)	Notes from visual Goodness-of-fit lest
	A-D Test	K-S Test	Least Squares Ranking			BIC	AIC	
Normal	9	8	9	8.67	9			
Lognormal	6	6	7	6.33	6			
Lognorman	0	0	,	0.55	0			
Lognormal III	1	4	1	2.00	2			
Exponential	8	9	6	7.67	8			
	-							
Pearson III	4	2	3	3.00	3			
Log Pearson III	2	1	2	1.67	1			
Ū.								
Cumhal	-	-	_	5.00	-			
Gumbel	5	5	5	5.00	5			
GEV	3	3	4	3.33	4			
Weibull	10	10	10	10.00	10			
Gamma	7	7	8	7.33	7			
Sannia				7.55	,			

-
ļ
ļ
-
ļ
_
ļ
ļ

Data and Frequency Analysis Spreadsheet for the City of Calgary - Version 1.2 - February 2014

				Selected Distribution and Res	
Distribution type cho	osen based on visual and nume	erical goodness-of-fit	Log Pears		Instructions: - Based on the results of the numerical and visual goodness-of-fit tests presented above, choose the preferred distribution in the cell
tests:			Log Pears		
Return Period 10000	Probability 0.9999	Magnitude 82700	Total Uncertainty (Upper Bound) #N/A	Total Uncertainty (Lower Bound)	
2000	0.9995	71100	#N/A	#N/A #N/A	
1000 500	0.9990	66500 62500	#N/A #N/A	#N/A #N/A	
200	0.9980	56700	#N/A 73100	#N/A 40300	
100	0.9900	52800	65100	40500	
50	0.9800	49100	57900	40300	
20	0.9500	44400	49700	39100	
10 5	0.9000	40900 37500	44300 39800	37500 35200	
3	0.6667	35000	37000	33000	
2	0.5000	32700	34400	31000	
1.4286 1.25	0.3000	30600	31800	29400 28600	
1.25	0.2000	29600 28500	<u>30600</u> 29600	27400	
1.0526	0.0500	27800	29500	26100	
1.0204	0.0200	27100	#N/A	#N/A	
1.0101	0.0100	26800	#N/A	#N/A	
1.005 1.001	0.0050	26500 26100	#N/A #N/A	#N/A #N/A	
1.0005	0.0005	25900	#N/A	#N/A	
1.0001	0.0001	25700	#N/A	#N/A	
*Total uncertainty is	based on sampling uncertainty	at ((95%) Confidence	Interval) plus distribution uncertainty of Top 4 distributions (based on numerical goodness of fit tests)	
			Log Pearson III Distr	ibution Granh	
60000					
55000 -	* Observations				
55000	Log Pearson III Di	istribution			
	Total Uncertainty	/ Upper Bound			
50000	Total Uncertainty	/ Lower Bound			
45000					
Value					
§ 40000					
E 40000				*****	
2 35000				****	
55000					
			A A A A A A A A A A A A A A A A A A A		
30000					
		×	× × ×		
25000					
20000					
15000			0.05 0.1 0.2 0.3	0.5 0.6667 0.9 0.9	
0.0001	0.0005 0.001 0	0.005 0.01 0.02	0.05 0.1 0.2 0.3 Non-exceedance	0.8	0.95 0.99 0.995 0.998 0.999 0.9995 0.9999
				Errors and Warnings	
				Errors and warnings	
Cumu	ulative distribution function wa	arning]		
	No warning		If a warning is present, please check if hyfran output results	were pasted correctly. If	
	No warning No warning		hyfran results were pasted correctly the warning signific		
	No warning		Distribution Function (CDF) used in this workbook does not	ot produce same output	
CDF based on par	rameters does not match Pears	on III distribution	values as the input frequency analysis results, which in a		
	No warning		numerical goodness-of-fit tests calculated by this spreadshe be based on inaccurate numbers. Another possible solu		
	No warning		different method of estimating the CDF parameters for example		
	No warning No warning		moments.		
	No warning		1		
			1		

e cell on the left

APPENDIX E

Oil/Grit Separators

To: LGN Consulting Engineers

From: Rainwater Management

Date: 5-Oct-22

Re: Ascension Lands

Sizing Estimate Package

Engineering Information

- 1) Particle Size Distribution: 85% removal of the ETV particle size distribution *
- 2) Site Criteria and Results:

Drainage Area (ha)	Total Imperviousness (%)	RWM Model	Avg. Net Annual TSS % Removal Estimate	Avg. % Rainfall Volume Treated
7.77	35%	RWM-DM-1800	89%	91%

3) EPA SWWM Design Criteria:

Flow (I/s)	Slope (%)	Imperv./Perv. Depression Storage (mm)	Imperv./Perv. Manning's n	Min/Max Infiltration Rate (mm/hr)	Decay Rate	Daily Evaporation Rate (mm)
544	2%	1.6/3.2	0.015/0.25	75/7.5	0.00115	2.54

Design Parameters

- 1) The unit for this project has been designed to remove a minimum 85% TSS annually for every year on record from a minimum 90 % of the total runoff volume over the period of record. This is based on the requirements defined in the City of Calgary.
- 2) This unit provides removal for small, frequent storm events that represent the majority of annual rainfall volume and pollutant load. Treatment continues for large, infrequent events; however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.
- 3) The peak flows will be conveyed through the unit without re-suspending the previously trapped pollutants. The sediment storage sump is separate from the high flow area.
- 4) Max. nominal pipe sizes reflect, or in part, City of Calgary Max. Pipe Sizes In Round Manholes (Rev 2) Max. inlet and outlet pipe diameter for 180 Deg. pipe configuration is 1050mm/1050mm (Concrete/PVC) and for 90 Deg. pipe configuration is 750mm/750mm.

* ETV particle size distribution utilized, or in part, shown on Page 4.

502-1952 Kingsway Ave, Port Coquitlam, BC V3C 6C2 p: 778-846-7246

Project City: Calgary Designation: Dry Pond Revision: 1

City of Calgary Checklist

- 7) The unit is designed to operate in free flow conditions but can also handle submerged or backwater conditions without resuspending previously captured material. This condition is met.
- 8) The unit will treat a minimum 90 % of the total runoff volume over the period of record. This condition is met.
- 9) The unit has a minimum annual TSS removal rate of 85 % for each and every year. This condition is met.
- 10) Average volume treated = Area x Conversion Factor x Avg. Annual Precipitation x Total Imperviousness x Avg. Volume Treated.

Drainage Area (ha)	Conversion Factor	Agv. Annual Precipitation (mm)	Total Imperviousness (%)	Avg. % Volume Treated as per p.8	Avg. Volume Treated (m3)
7.77	10	400	35%	91%	9,850

Average annual sediment removed = Avg. Volume Treated x Avg. Removal Efficiency x Sediment Concentration.

Avg. Volum Treate (m3)	Etticiency	Sediment Concentration (kg/m3)	Avg. Annual Sediment Removed (kg)	RWM Model Sump Capacity (kg)	Sump Capacity Condition
9,850	89%	0.444	3,901	7,367	Condition Met

11) The allowable treatment flow:

Manhole Diameter (mm)	Max Hydraulic Loading Rate (I/s/m2)	Allowable Treatable Flow (I/s)	Allowable Treatment Flow Condition
1,829	27	70.9	Condition Met

- 12) Items a and b are covered in the attached tables. Item c is covered in requirement 10 above. These conditions are met.
- 13) A product guide is enclosed. This condition is met.

rainwater. MANAGEMENT

RWM-DM Technology Summary

The Rainwater Management RWM-DM Stormwater Treatment System is a hydrodynamic oil/grit separator (OGS) that provides a unique flow path inside the treatment chamber to enhance gravity settling to remove solids from stormwater runoff. The RWM-DM is unique in that it does not back up the water significantly so it captures the sediment in the sump rather than settling the majority in the inlet pipe system.

This technology is the first technology to go through the latest ETV Protocol test program which ensures that total suspended solids (TSS) removals occur inside the OGS and not in the upstream piping. All previously tested OGS units were allowed to settle TSS in the inlet pipe and count it towards their overall TSS removal. The RWM-DM unit is the first design on the market to minimize settling in the upstream piping system.

The RWM-DM unit has been fully third party tested and verified by an ETV approved laboratory and is currently listed on the ETV Canada product list (https://etvcanada.ca/wp-content/uploads/2022/09/ISO-14034-ETV-Verification-Statement_RWM-DM-1200_2022-2025.pdf).

The RWM-DM Stormwater Treatment System can be installed as a bend structure, can accommodate multiple inlets, and does not require an elevation difference between the inlet and outlet pipes.

Maintenance is a key to any oil/grit separator system for proper long-term effectiveness. RWM-DM allows for unobstructed access without confined space requirements. Rainwater Management is available to train a maintenance crew or to provide regular inspection services.

Rainwater Management is happy to provide further information if required.

Kind Regards, Peter Law P.Eng.

This report confirms that the above stormwater unit is designed to the manufacturer's specifications to meet the design criteria.

Canadian ETV - ISO 14034 Information

Canadian ETV Testing - NEW REQUIREMENTS

The Canadian ETV (ISO 14034) testing protocol was recently updated with the intent of eliminating OGS systems that settle the pollutants in the inlet (upstream) pipe. Technologies undergoing testing must now report the amount of sediment that is captured in the Inlet pipe. The reason for the change is that they found that Vendors were enhancing the removal rates by designing systems that would back the water up in the pipe and settle out significant quantities of sediment in the inlet pipe.

The Rainwater Management RWM-DM and RWM-DM-OS units are the first units to be tested under the new protocol and have been specifically designed to capture the sediment in the OGS manhole. <u>Technologies that were tested under the old protocol may be depositing large amounts of sediment in the piping systems rather than capturing it in the manhole.</u>

Particle Size Distribution

The ISO 14034 (Canadian ETV) Particle Size Distribution that is utilized for testing all OGS units is shown below. This is the particle size distribution utilized in whole or in part for this sizing.

Particle Size (µm)	Percent Less Than	Particle size Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Third-Party Testing and Verification

The RWM-DM and RWM-DM-OS units are the latest development by Rainwater Management that are designed to capture a wide range of pollutants. The technology has been tested following the latest ISO 14034 (Canadian ETV) Procedure for Laboratory Testing of Oil/Grit Separators and is currently being verified. An important feature of the latest Canadian ETV testing requirements is that the inlet pipe diameter and length is now limited and any sediment that settles in the inlet pipe must be recorded to show the sediment that is actually captured in the OGS manhole. Previously tested OGS units (everything aside from RWM-DM unit as Rainwater Management is the first to go through the new protocol) could utilize designs that backed up the flow in the system to enhance removals by utilizing the inlet pipe as a settling chamber. Rainwater Management does not do that. Rainwater Management did multiple testing of various configurations and made a clone of an existing system sold frequently in British Columbia and found it removed 85% of total captured sediment in the inlet pipe during lab testing. This is the equivalent of using the upstream municipal pipe system to settle out the pollutants rather than capturing it on the OGS unit.

Scour Testing

RWM-DM and RWM-DM-OS units have an internal bypass that directs the treatment flows into the treatment/storage chamber and bypasses the peak events without scouring previously capture pollutants. This has been third-party verified during the Canadian ETV (ISO-14034) testing. The RWM-DM OGS units can be installed in an inline configuration knowing that the scour prevention technology is second to none.

Oil Capture and Scour

The RWM-DM-OS unit effectively achieved 100 % oil capture and retention for all flows during the thirdparty testing of the Light Liquid Retention Simulation Test Protocol of the ISO 14034 Procedure for Laboratory Testing of Oil/Grit Separator. Note that this test originally was simply a re-entrainment test and the oil test sample was pre-loaded into the storage chamber then it was checked for oil scour. All of the current OGS units listed on the ETV website did not capture the simulated oil, they only retained it as shown. The RWM-DM-OS unit had to capture, remove and prevent scour of the oil test sample.

1960 1961 1962	\vdash	196	5	1963		1965	1964 1965 1966 '	1967	1968	1969	1970	1971	Flow I/s
102 64 53 64 101	53 64	64		101		127	57	75	101	114	74	104	-
282 168 142 185 247	142 185	185	_	247		413	231	161	202	279	236	257	2
145 161 153 149 306	153 149	149		306		454	243	196	267	422	227	216	3
	137 327	327		480		727	390	100	219	328	247	337	4
243 98 259	98 259	259	_	252		447	214	113	257	394	196	334	5
139 60 132 239 217	132 239	239		217		462	355	59	139	294	336	117	6
161 69 116 303 327	116 303	303		327		322	356	237	161	235	188	305	7
84 0 160 187 163	160 187	187		163		271	325	83	82	275	267	187	8
94 119 122 249 246	122 249	249		246		244	248	91	153	121	61	179	6
136 70 34 238 169	34 238	238	_	169		205	345	102	170	236	137	33	10
114 113 39 150 152	39 150	150		152		228	338	77	192	647	38	190	11
124 210 41 82 163	41 82	82		163		205	40	124	207	248	120	123	12
44 177 134 91 275	134 91	91		275		45	44	45	364	181	0	182	13
97 0 98 50 98	98 50	50		98		488	146	146	340	344	0	66	14
158 104 53 105 107	53 105	105		107		208	107	104	104	207	157	54	15
422	422 486	486		242		352	230	419	119	419	423	529	18
272 342 267	342 267	267		343		276	340	137	280	341	0	279	20
235	235 500	500		305		964	474	89	230	585	88	1062	25
770 0 581	0 581	581		389		1074	203	194	501	103	194	305	30
959 354 807	354 807	807		330		229	1774	227	472	463	240	122	35
134 273 141 794 131	141 794	794		131		253	272	127	415	986	283	0	40
156 156 305 454 147	305 454	454		147		0	0	0	154	144	294	149	45
0 345 0 0 167	0 0	0		167		360	171	165	178	0	0	0	50
0 560 368 0 373	368 0	0		373	_	0	388	0	0	0	0	190	55
0 0 0 212 201	0 212	212		201		420	0	0	0	0	202	216	60
468 458 0 233 0	0 233	233		0		681	0	0	0	0	458	471	69
0 251 0 0 0	0 0	0		0		0	0	0	0	0	253	0	71
0 0 521 0 0	521 0	0		0		0	0	0	0	0	0	0	75
0 771 0 1168 0	0 1168	1168		0		733	0	279	401	307	306	307	168
0 764 0 0 778	0 0	0		778		929	0	0	0	0	1444	0	261
	0 0	0		0		0	0	0	0	0	966	0	354
	0 0	0		0		0	0	0	0	0	0	0	447
	0	0		0	_	0	0	0	0	0	0	0	540
	0 0	0		0	-	0	0	0	0	0	0	0	540 +
6242 7835 4202 8177 6707	4202 8177	8177		6707		11117	7290	3352	5708	7674	7465	6344	Total Runoff
			-										

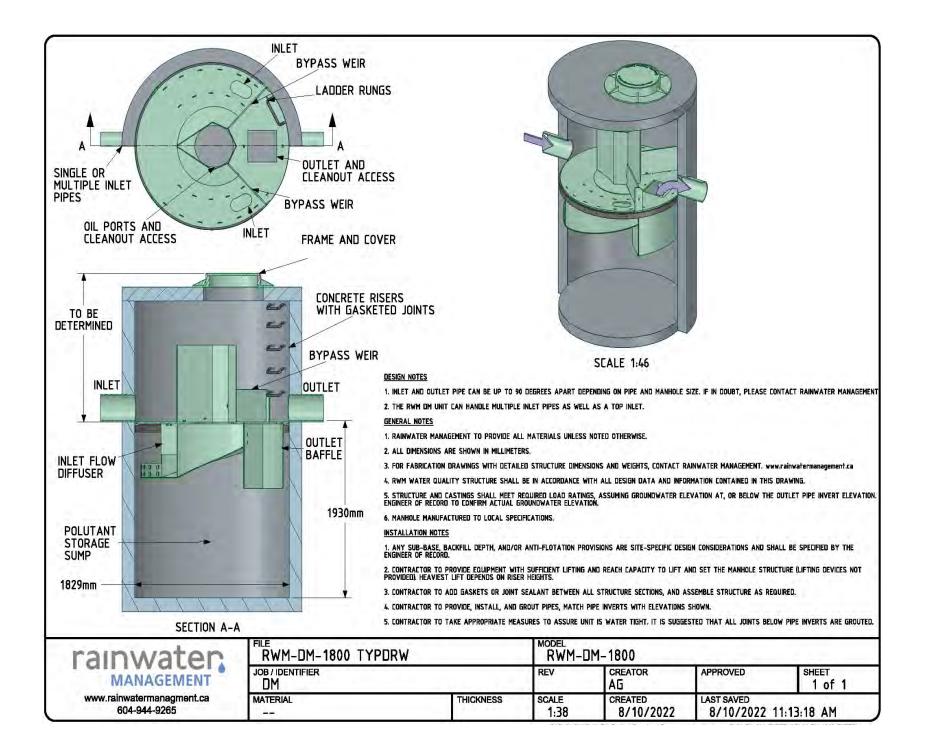
Meters
Cubic
f/Year ir
I Runof
Annual

	Flow I/s	-	2	3	4	5	9	2	8	б	10	11	12	13	14	15	18	20	25	30	35	40	45	50	55	60	69	71	75	168	261	354	447	540	540 +	Total Runoff
	1984	141	205	322	223	373	315	165	81	90	69	149	371	133	196	53	695	416	477	481	347	137	319	0	0	0	0	0	0	0	0	0	0	0	0	5759
	1983	79	154	231	80	113	98	93	191	148	139	73	164	403	50	0	351	69	177	396	223	269	147	0	0	0	236	0	0	0	0	0	0	0	0	3886
	1982	113	269	241	145	383	160	440	185	242	172	149	0	269	98	211	304	271	502	874	361	142	0	0	0	0	245	0	0	914	0	0	0	0	0	0699
	1981	153	210	340	366	347	211	273	209	217	550	232	414	224	97	103	345	816	393	391	461	1374	301	496	376	0	248	0	0	343	0	0	0	0	0	9493
	1980	88	281	186	197	188	256	160	240	302	237	191	126	91	0	159	545	200	726	488	704	561	316	494	189	405	476	0	0	0	0	0	0	0	0	7806
c Meters	1979	46	200	107	150	184	82	144	105	88	0	0	126	89	0	0	243	67	561	387	120	129	294	171	0	202	242	251	0	0	0	0	0	0	0	3987
Runoff/Year in Cubic Meters	1978	150	285	389	275	371	540	192	318	464	273	416	575	314	436	361	969	267	1064	385	122	269	146	0	0	0	0	0	0	290	0	0	0	0	0	8597
unoff/Yea	1977	116	245	313	278	242	297	185	319	276	170	191	166	270	193	54	354	72	621	491	0	408	162	0	0	415	675	0	0	279	0	0	0	0	0	6793
Annual R	1976	121	249	360	285	358	234	188	246	212	239	301	286	46	47	104	574	67	227	489	447	792	457	337	0	0	0	0	0	0	0	0	0	0	0	6664
1	1975	101	291	278	209	278	292	282	160	303	139	226	163	91	147	52	239	132	238	305	338	0	0	0	195	216	0	0	0	619	0	0	0	0	0	5294
	1974	79	205	133	327	222	136	375	171	95	35	75	80	91	48	104	117	69	828	279	0	268	152	510	378	0	0	0	0	938	0	0	0	0	0	5712
	1973	119	242	278	323	241	195	210	189	119	69	150	82	268	243	209	652	546	574	297	242	139	0	343	0	0	0	0	0	0	0	0	0	0	0	5727
	1972	122	263	317	171	373	175	94	452	216	171	154	377	06	145	159	186	417	696	791	225	534	0	0	195	0	475	0	0	1509	0	0	0	0	0	8307

S
<u> </u>
Ð
÷
e
C
<u>_</u>
()
$\mathbf{}$
·=
<u> </u>
ea
~
$\boldsymbol{<}$
f
Ť
õ
~
Ľ
Ξ
σ

	Flow I/s	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	18	20	25	30	35	40	45	50	55	60	69	71	75	168	261	354	447	540	540 +	Total Runoff
	1997	119	202	264	228	300	118	558	245	244	103	189	331	222	247	414	346	211	394	772	571	268	160	0	0	0	0	0	266	295	790	0	0	0	0	7858
	1996	145	429	627	200	322	440	116	241	277	337	0	83	91	50	0	124	265	301	301	111	269	157	172	0	0	0	0	0	0	0	0	0	0	0	5058
	1995	133	300	452	359	292	273	120	646	217	342	228	167	412	142	210	115	0	157	0	0	0	0	167	372	0	0	0	0	1187	0	0	0	0	0	6291
	1994	143	245	303	357	357	525	142	131	301	133	115	162	0	0	105	358	135	299	285	347	133	157	0	0	0	0	0	0	614	0	0	0	0	0	5351
	1993	123	230	271	306	413	705	268	165	246	206	148	204	44	97	205	301	806	495	303	231	128	158	338	574	0	228	0	0	598	0	0	0	0	0	7789
ic Meters	1992	157	333	518	295	288	178	214	83	273	280	229	332	313	196	205	513	341	802	511	468	409	146	167	0	200	243	0	0	884	0	0	0	0	0	8576
Runoff/Year in Cubic Meters	1991	72	237	209	123	223	179	242	192	123	241	150	83	47	145	105	418	403	85	692	235	670	146	509	195	201	231	0	0	656	0	0	0	0	0	6812
unoff/Ye	1990	116	315	163	250	264	115	187	107	150	136	184	205	176	195	103	345	544	338	388	0	544	0	169	0	209	248	252	257	0	0	0	0	0	0	5961
Annual R	1989	163	282	426	213	192	233	186	137	212	102	152	124	06	49	51	531	349	150	505	117	0	0	341	370	0	0	0	0	276	0	0	0	0	0	5250
	1988	127	357	128	259	194	94	161	79	339	176	152	290	184	244	156	346	419	700	881	563	137	615	501	369	0	0	0	0	0	0	0	0	0	0	7470
	1987	110	204	203	207	135	119	165	265	218	244	78	249	134	293	105	359	279	571	413	347	272	147	0	0	205	0	0	0	757	0	0	0	0	0	6078
	1986	106	219	214	258	280	613	406	194	61	140	192	165	135	96	157	420	131	206	501	836	534	1321	353	192	210	0	0	257	0	0	0	0	0	0	8696
	1985	131	319	212	136	313	260	273	133	120	175	78	42	179	194	159	239	132	259	587	233	395	301	517	194	0	219	0	0	1071	0	0	0	0	0	6871

<u> </u>
d)
Ť
ē
Ĕ
2
_
C
2
П
\mathbf{C}
-
.⊆
a
σ
d)
Š
f
Ŧ
Ö
n
$\overline{\mathbf{v}}$
r
_
a
Ĕ
_


	2009	71	285	154	243	195	341	96	80	92	137	113	82	135	94	53	64	0	84	0	0	0	154	0	184	614	242	0	0	531	0	0	0	0	0	4046
	2008	117	294	532	469	528	374	378	299	214	206	300	201	226	144	159	237	11	651	1195	366	129	435	0	0	0	236	0	0	269	0	0	0	0	0	8458
	2007	118	243	233	398	300	264	287	189	121	238	151	368	226	20	105	418	348	806	585	241	410	159	509	769	198	0	0	0	828	0	0	0	1776	0	10349
	2006	101	228	203	264	175	279	71	220	95	103	37	82	136	194	156	602	269	494	419	696	275	320	169	187	212	0	0	0	1566	0	0	0	0	0	7662
eters	2005	83	276	222	155	147	257	298	162	211	239	452	248	358	146	212	417	210	989	492	217	134	0	864	585	0	1622	0	0	586	1389	0	0	0	0	10971
Cubic Me	2004	95	215	204	230	180	141	236	106	248	176	303	203	06	195	105	296	11	393	97	113	129	0	171	372	613	714	0	0	373	0	0	0	0	0	6068
f/Year in	2003	91	280	234	233	355	420	540	189	92	413	231	331	44	147	105	235	206	495	281	351	0	312	342	387	409	242	0	0	277	0	0	0	0	0	7243
Annual Runoff/Year in Cubic Meters	2002	102	287	264	203	260	174	189	188	184	202	76	81	270	196	0	227	211	424	187	112	0	153	337	0	0	0	0	0	999	0	0	0	0	0	4992
Annu	2001	70	220	388	134	183	180	281	188	180	202	114	123	135	86	260	124	280	385	198	111	275	153	0	0	211	0	251	269	0	652	0	0	0	0	5666
	2000	120	169	351	259	135	252	201	237	92	206	490	205	180	194	156	410	196	746	91	579	139	291	0	191	209	217	0	0	830	0	0	0	0	0	7146
	1999	110	416	394	481	643	668	95	266	91	237	152	163	45	0	0	305	457	827	500	0	0	1178	0	192	0	0	0	0	598	0	0	0	0	0	7818
	1998	100	302	291	402	190	344	239	295	183	133	184	365	133	196	155	533	680	1684	583	242	131	314	862	575	199	473	0	260	613	0	0	0	0	0	10660

eters
Š
iqr
Ö
ar ir
Yea
off/
Sun
alR
nu

TSS Removal

	emoval
Year	Removal
1960	88%
1961	85%
1962	86%
1963	88%
1964	90%
1965	89%
1966	
1967	89%
	91%
1968	90%
1969	91%
1970	88%
1971	89%
1972	89%
1973	90%
1974	89%
1975	92%
1976	90%
1977	89%
1978	92%
1979	86%
1980	86%
1981	88%
1982	90%
1983	90%
1984	91%
1985	88%
1986	87%
1987	90%
1988	88%
1989	91%
1990	88%
1991	87%
1992	90%
1993	90%
1994	93%
1995	94%
1996	93%
1997	90%
1998	86%
1998	91%
2000	89%
2001	89%
2002	92%
2003	89%
2004	87%
2005	86%
2006	88%
2007	88%
2008	91%
2009	90%
Average	89%

Runoff	Treated
Year	Treated
1960	100%
1961	80%
1962	88%
1963	86%
1964	88%
1965	85%
1966	100%
1967	92%
1968	93%
1969	96%
1970	63%
1971	95%
1972	82%
1973	100%
1973	84%
1974	88%
1975	100%
1977	96%
1978	97%
1979	100%
1980	100%
1981	96%
1982	86%
1983	100%
1984	100%
1985	84%
1986	97%
1987	88%
1988	100%
1989	95%
1990	96%
1991	90%
1992	90%
1993	92%
1994	89%
1995	81%
1996	100%
1997	83%
1998	92%
1999	92%
2000	88%
2001	84%
2002	87%
2002	96%
2003	94%
2004	82%
2003	80%
2000	75%
2008 2009	92% 87%
Average	91%

To: LGN Consulting Engineers

From: Rainwater Management

Date: 5-Oct-22

Re: Ascension Lands

Sizing Estimate Package

Engineering Information:

1) Particle Size Distribution: 85% removal of the ETV particle size distribution *

rainwaten

MANAGEMENT

2) Site Criteria and Results:

Drainage Area (ha)	Total Imperviousness %	RWM Model	Avg. Net Annual TSS % Removal Estimate	Avg. % Rainfall Volume Treated
45.17	35%	329-5m Ultra	94%	92%

3) EPA SWWM Design Criteria:

Flow (I/s)	Slope	Imperv/Perv Depression Storage	Imperv/Perv Manning's n	Min/Max Infiltration Rate (mm/hr)	Decay Rate	Daily Evaporation Rate
3162	2%	1.6/3.2 mm	0.015/0.25	75/7.5	0.00115	2.54 mm

Design Parameters:

- 1) The unit for this project has been designed to remove a minimum 85% TSS annually for every year on record from a minimum 90 % of the total runoff volume over the period of record. This is based on the requirements defined in the City of Calgary.
- 2) This unit provides removal for small, frequent storm events that represent the majority of annual rainfall volume and pollutant load. Treatment continues for large, infrequent events; however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.
- 3) The peak flows will be conveyed through the unit without re-suspending the previously trapped pollutants. The sediment storage sump is separate from the high flow area.
 - * ETV particle size distribution utilized, or in part, shown on Page 9.

City: Calgary

Project City: Calgary Designation: West Inlet Revision: 0

rainwater. MANAGEMENT

City of Calgary Checklist:

- 7) The unit is designed to operate in free flow conditions but can also handle submerged or backwater conditions. This condition is met.
- 8) The unit will treat a minimum 90 % of the total runoff volume over the period of record. This condition is met.
- 9) The unit has a minimum annual TSS removal rate of 85 % for each and every year. This condition is met.
- 10) Average volume treated = Area x CF x Avg Annual Precipitation x Total Impreviousness x Avg. Vol. Treated from Page 8.

Drainage Area (ha)	Conv Factor	Agv. Annual Percip (mm)	Total Imperviou- sness %	Avg. Vol Treated as per p.8	Avg. Vol Treated (m3)
45.17	10	400	35%	92%	57,931

Average annual sediment removed = Avg. Vol Treated x Avg. Removal Efficiency from Page 8 x Sediment Concentration

Avg. Vol Treated (m3)	Avg. Removal Efficiency as per p.8	Sediment Concentration (kg/m3)	Avg. Annual Sediment Removed (kg)	Bottom Box Length (m)	RWM Models Sump Capacity (kg)	Sump Capacity Condition
57,931	94%	0.444	24,274	5	32,330	Contition Met

11) The allowable treatment flow:

RWM Ultra Model	Box Unit Width (mm)	Max Hyd. Laoding Rate (l/s/m2)	Alowable Treatable Flow (I/s)	Allowable Treatment Flow Condition
329-5m	2440	27	329.4	Condition Met

- 12) Items a and b are covered in the attached tables. Item c is covered in requirement 10 above. These conditions are met.
- 13) A product guide is enclosed. This condition is met.

rainwater. MANAGEMENT

Sizing Summary:

The unit is a hydrodynamic separator that combines screening and enhanced gravity settling to remove floating, neutrally buoyant and non-buoyant solids from stormwater runoff. The non-blocking screen captures 100% of the pollutants equal to the screen aperture size (2400 microns) and larger. All non-buoyant solids are directed to a sump that separates the captured pollutants from the treatment flow path to prevent the larger storm events from re-suspending previously trapped material. The floatable debris and oil/grease are trapped upstream of the baffle for easy removal.

The unit can be installed as a bend structure and can accommodate multiple inlets.

Maintenance is a key to any systems proper long-term effectiveness. The unit allows for easy access without confined space requirements. Rainwater Management is available to train a maintenance crew or to provide regular inspection/maintenance services.

Rainwater Management is happy to provide further information if required.

Kind Regards,

Peter Law P.Eng.

Permit to Practice Rainwater Management Ltd. Permit Number P11426

This report confirms that the above stormwater unit is designed to the manufacturer's specifications to meet the design criteria.

	Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	125	150	200	250	300	330	400	420	440	985	1530	2075	2620	3165	3165 +	Total Runoff
	1971	2778	1431	2056	1116	1479	1678	2559	1218	694	565	613	686	236	780	559	0	632	066	1402	3529	1908	1262	1741	1028	1141	1318	0	0	0	0	0	0	0	0	33400
	1970	2038	1633	1671	1421	1279	1638	516	1235	846	751	412	897	244	0	281	304	633	0	356	785	1901	1774	866	912	1127	4008	0	0	3446	8457	0	0	0	0	39431
	1969	2504	2216	2437	2838	2404	1178	1103	1675	1021	2441	2442	895	235	1553	1949	0	933	0	0	3648	1455	4615	2462	0	0	1318	0	0	0	0	0	0	0	0	41324
	1968	1972	1639	1139	1373	1003	1053	1317	298	692	740	1443	681	717	1590	2213	296	625	670	708	1575	472	4492	2400	0	0	0	0	0	1838	0	0	0	0	0	30947
ers	1967	1575	837	1053	430	679	936	531	904	704	569	410	1340	0	0	0	594	1247	342	710	872	1445	612	781	0	0	1376	0	0	0	0	0	0	0	0	17947
ual Runoff/Year in Cubic Meters	1966	1948	1703	1548	2322	1887	929	2299	1228	858	2463	1845	1108	957	526	554	290	0	0	1057	2670	496	10636	1515	948	0	0	0	0	0	0	0	0	0	0	39789
off/Year ir	1965	3434	3763	3185	3090	2280	2166	1740	1517	1017	1333	1238	1337	240	1314	1697	1768	316	1011	1063	4177	3324	4778	1546	922	2237	3671	0	0	2112	4873	0	0	0	0	61148
nual Run	1964	2354	2132	2444	2219	1667	344	815	1518	1346	185	1254	669	0	528	1385	878	312	336	349	2441	2014	4305	1677	2062	0	0	0	0	0	3902	0	0	0	0	37137
Ann	1963	1954	1258	1315	1894	1572	1049	2005	1371	1354	1139	1030	1108	502	526	287	902	318	333	1427	4080	2919	5218	3091	2053	0	0	0	0	5809	0	0	0	0	0	44513
·	1962	1383	1122	727	799	1104	712	393	464	875	753	1242	217	727	529	550	592	632	0	0	838	1523	2514	885	1006	2234	0	0	0	0	0	0	0	0	0	21821
	1961	1634	1221	262	872	1496	1148	418	1062	206	563	1029	457	991	1044	566	1474	635	0	346	2865	3051	4328	2299	4008	0	2426	1492	0	2079	3924	0	0	0	0	42731
	1960	2645	1636	1534	1141	1170	1146	1717	1323	687	556	626	669	1455	1046	845	1479	631	0	1394	6014	917	1174	876	0	0	1353	0	0	0	0	0	0	0	0	32034
	Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	20	75	80	85	06	95	100	125	150	200	250	300	330	400	420	440	985	1530	2075	2620	3165	3165 +	Total Runoff

Meters
Cubic
Year in
Runoff/
Inual F

	Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	125	150	200	250	300	330	400	420	440	985	1530	2075	2620	3165	3165 +	Total Runoff
	1984	1835	1507	2090	1968	1385	1532	839	1051	1200	1326	1648	1108	0	260	1109	589	940	662	1057	3295	2884	2614	749	0	0	0	0	0	0	0	0	0	0	0	31647
	1983	1377	1152	861	906	776	579	1078	782	854	561	1044	668	976	529	0	0	620	339	350	844	2008	2517	756	1069	0	0	0	0	0	0	0	0	0	0	20648
	1982	2731	1902	1279	1676	1197	1513	1490	1686	1011	759	422	221	1227	1277	565	602	1571	1000	1059	2781	3481	1288	0	1010	0	4031	0	0	0	0	0	0	0	0	35780
	1981	2983	1763	2411	1889	2314	1066	2838	2022	1028	1489	1437	879	736	521	1118	892	1565	654	0	4347	1964	5732	6445	3908	0	0	0	0	1690	0	0	0	0	0	51691
	1980	2245	2053	1233	1467	1569	1648	1487	1677	343	1131	1844	926	984	511	841	882	1238	0	705	3148	2953	5742	4156	2952	0	0	0	0	0	0	0	0	0	0	41733
ic Meters	1979	1569	1031	1013	788	790	465	662	621	846	372	212	0	479	528	287	0	1234	0	1049	1158	1946	1197	2357	981	1140	0	0	0	0	0	0	0	0	0	20722
Runoff/Year in Cubic Meters	1978	3128	2619	1988	2300	2154	2700	949	2624	2200	1682	1457	2449	1960	2104	1677	885	1253	329	1040	4035	3009	2573	0	0	0	1330	0	0	0	0	0	0	0	0	46447
unoff/Ye	1977	2359	2060	1980	1565	2072	1028	1492	1821	676	0	1040	2251	952	1320	834	1493	0	675	359	3307	1493	1865	1619	1949	1105	0	0	1548	0	0	0	0	0	0	36861
Annual R	1976	2619	1944	2017	2291	1490	1038	1636	1981	676	1140	1247	1126	735	0	563	886	627	336	0	1950	3010	5835	2236	0	0	0	0	0	0	0	0	0	0	0	35384
	1975	2568	1944	1915	1716	2157	1280	939	1390	679	941	1241	669	488	260	280	1175	637	0	0	1651	1432	0	1590	0	0	1194	1474	0	0	0	0	0	0	0	27622
	1974	1875	1097	1679	1308	1186	1187	1467	1348	532	565	1033	0	236	268	287	298	632	0	352	4067	945	2463	1621	1961	0	0	0	0	4451	0	0	0	0	0	30858
	1973	2611	1991	1286	1398	1365	1382	933	606	1733	1152	1233	1142	1192	1041	0	882	1255	686	695	2863	1476	2071	832	0	0	0	0	0	0	0	0	0	0	0	30430
	1972	2812	1725	2006	1421	1325	1883	1903	1100	1021	752	1216	675	2897	527	549	880	961	664	1418	4797	1503	1310	1486	0	1120	5142	0	3083	0	0	0	0	0	0	44179

Meters
Cubic
ear in
Runoff/Y
nual R

_	-	-								-		-		-				_		_		-													
Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	125	150	200	250	300	330	400	420	440	985	1530	2075	2620	3165	3165 +	Total Runoff
1997	1993	1455	1975	1292	1192	1411	4047	2000	846	934	428	677	1702	1562	1400	1482	641	665	0	4020	2992	1843	0	0	2217	0	0	0	1587	4109	0	0	0	0	42470
1996	3237	3070	2241	1613	2530	1315	824	455	1367	1673	0	228	245	538	279	297	323	0	0	2904	1460	1241	1500	0	0	0	0	0	0	0	0	0	0	0	27340
1995	2352	2200	2733	1932	1796	1047	1346	2941	516	1907	820	1117	1222	1300	555	0	314	0	695	751	495	1401	825	0	0	0	0	0	5523	0	0	0	0	0	33788
1994	2440	1945	1789	2121	1804	2844	919	1074	668	751	202	677	493	528	0	0	629	2006	705	1558	537	592	734	929	0	1347	0	0	1590	0	0	0	0	0	28911
1993	2600	2076	1714	1764	3860	2728	923	619	688	1301	633	663	0	517	1106	906	629	325	1036	5868	1495	1965	2485	3852	0	0	0	0	2972	0	0	0	0	0	42726
1992	3212	1650	3239	1372	1722	1053	947	1524	1705	1346	824	1130	1235	2069	2219	882	1581	0	349	2839	3964	3007	772	2976	1155	0	0	0	4143	0	0	0	0	0	46915
1991	2299	1279	1338	971	955	465	1498	1384	1012	1322	824	1133	236	521	834	892	318	328	0	3284	3933	4540	2426	936	1097	1435	0	0	1632	0	0	0	0	0	36891
1990	2565	1511	1453	1356	890	1124	1203	921	1369	1106	401	678	727	775	838	898	1258	0	1754	2966	491	3258	0	3070	1170	0	0	0	0	0	0	0	0	0	31782
1989 1990 1991 1992	2693	2465	1473	1707	1502	1176	1218	452	676	956	1041	666	484	776	280	0	620	989	0	742	066	3177	1599	0	0	1202	0	0	0	0	0	0	0	0	26883
	2691	1273	1379	1129	986	1614	527	1231	691	933	635	889	1680	532	1672	895	1245	1341	697	2454	2567	7972	4168	1855	0	0	0	0	0	0	0	0	0	0	41057
1987	1790	1372	885	1127	892	1361	1356	1068	860	1517	1678	1145	470	254	1128	1179	320	0	708	3618	1458	2946	1492	921	0	0	0	0	3430	0	0	0	0	0	32978
1986	1785	1879	1638	1332	2423	3149	1606	1061	1347	385	830	684	967	520	1119	1196	936	1004	1054	2544	4872	3806	9033	1022	0	1367	0	0	0	0	0	0	0	0	47556
1985	2529	1626	1413	1341	1491	937	667	1055	534	369	627	448	716	515	283	602	926	672	345	1202	4445	1925	3330	2872	1094	0	1458	0	4012	0	0	0	0	0	37433

Meters
Cubic
Year in
Runoff/
Annual

	2009	2253	1254	1212	1272	785	1454	136	1058	687	382	209	221	246	270	287	0	0	660	0	389	0	1825	2431	981	1106	0	0	0	2714	0	0	0	0	0	21829
	2008	2931	2424	3522	2581	2119	2537	1472	1959	1378	1489	828	2015	245	771	277	1187	1570	669	706	2085	944	5233	2384	951	0	0	1474	0	1616	0	0	0	0	0	45367
	2007	2802	1736	2075	1576	1611	1417	2578	1194	854	1133	422	1320	724	1319	553	868	308	1334	1046	2389	2875	3686	2524	2882	2252	0	0	0	4221	0	0	8818	0	0	54516
	2006	2375	1486	1602	1364	963	1161	1226	302	514	764	833	1118	1210	1046	0	595	944	1690	1749	2409	1959	4170	1670	2955	0	0	0	0	7588	0	0	0	0	0	41692
eters	2005	2190	1683	1219	1799	1197	684	1088	1653	850	933	2284	1111	1461	2086	1661	900	1564	675	346	3298	2904	4954	2494	6945	3411	1389	0	0	6046	3832	0	0	0	0	60658
Annual Runoff/Year in Cubic Meters	2004	2195	1525	1540	1199	1581	1172	542	1368	853	1511	821	1128	1476	780	548	292	637	341	0	446	0	1813	1584	2937	3425	0	0	0	1679	0	0	0	0	0	31391
ff/Year in	2003	2381	2128	2267	2113	2249	1892	2582	1368	1353	740	213	1111	978	520	1949	0	0	332	355	3131	939	1847	4173	1921	2251	0	0	0	0	0	0	0	0	0	38793
ual Runo	2002	2600	1992	1248	1040	1291	1071	946	1072	1033	367	1031	456	726	259	553	600	933	1338	345	1244	469	1832	720	0	0	0	1442	1573	0	0	0	0	0	0	26178
Annu	2001	1952	1516	1840	1253	1177	939	1481	458	1547	375	1237	679	240	1550	0	0	0	330	703	4053	978	1247	1735	1026	1117	0	0	0	3259	0	0	0	0	0	30694
	2000	2087	1919	1593	1415	266	1416	675	1391	845	1699	2500	1781	1685	792	569	897	320	667	0	2802	3527	1237	2538	1071	0	0	0	0	4111	0	0	0	0	0	38533
	1999	3471	2221	2529	2735	3160	2787	1368	905	858	758	423	690	251	269	839	0	0	992	697	4355	2460	1136	7537	0	0	1246	0	1569	0	0	0	0	0	0	43253
	1998	2782	2581	1889	2461	1477	1535	668	1194	1710	1889	1877	873	1464	1305	0	592	944	1331	691	5590	8440	5656	3081	4019	1080	1336	1474	0	0	0	0	0	0	0	57941

Meters
Cubic
Year in
Runoff/
Inual F

TSS Removal

TSS R	emoval	Runoff	Treated
Year	Removal	Year	Treated
1960	95%	1960	96%
1961	91%	1961	77%
1962	93%	1962	100%
1963	94%	1963	87%
1964	95%	1964	89%
1965	94%	1965	83%
1966	95%	1966	100%
1967	95%	1967	92%
1968	95%	1968	94%
1969	95%	1969	97%
1970	92%	1970	60%
1971	94%	1971	96%
1972	92%	1972	81%
1973	96%	1973	100%
1974	95%	1974	86%
1975	95%	1975	90%
1976	95%	1976	100%
1970	94%	1970	96%
1978	96%	1978	97%
1979	94%	1979	100%
1979	94%	1979	100%
1980	94%	1980	97%
1981	94%	1982	89%
1982	94 %	1983	100%
	95%		100%
1984		1984	
1985	92%	1985	85%
1986	93%	1986	97%
1987	95%	1987	90%
1988	94%	1988	100%
1989	95%	1989	96%
1990	94%	1990	100%
1991	93%	1991	92%
1992	95%	1992	91%
1993	95%	1993	93%
1994	96%	1994	90%
1995	97%	1995	84%
1996	97%	1996	100%
1997	96%	1997	87%
1998	93%	1998	95%
1999	94%	1999	93%
2000	95%	2000	89%
2001	95%	2001	89%
2002	94%	2002	88%
2003	94%	2003	100%
2004	93%	2004	95%
2005	92%	2005	81%
2006	94%	2006	82%
2007	94%	2007	76%
2008	95%	2008	93%
2009	94%	2009	88%
	94%	Average	92%

Runoff	Treated
Year	Treated
1960	96%
1961	77%
1962	100%
1963	87%
1964	89%
1965	83%
1966	100%
1967	92%
1968	94%
1969	97%
1970	60%
1971	96%
1972	81%
1973	100%
1974	86%
1975	90%
1976	100%
1970	96%
1977	97%
1978	100%
1979	100%
1981	97%
1982	89%
1983	100%
1984	100%
1985	85%
1986	97%
1987	90%
1988	100%
1989	96%
1990	100%
1991	92%
1992	91%
1993	93%
1994	90%
1995	84%
1996	100%
1997	87%
1998	95%
1999	93%
2000	89%
2001	89%
2002	88%
2003	100%
2004	95%
2005	81%
2006	82%
2000	76%
2007	93%
2009	88%
Average	92%
, troiage	JE /0

ETV Particle Size Distribution:

Particle Size Fraction (um)	Percent	
500-1000	5	
250-500	5	
150-250	15	
100-150	15	
75-100	10	
50-75	5	
20-50	10	
8-20	15	
5-8	10	
2-5	5	
<2	5	

To: LGN Consulting Engineers

- From: Rainwater Management
- Date: 5-Oct-22

Re: Ascension Lands

Sizing Estimate Package

Engineering Information:

1) Particle Size Distribution: 85% removal of the ETV particle size distribution *

rainwaten

MANAGEMENT

2) Site Criteria and Results:

Drainage Area (ha)	Total Imperviousness %	RWM Model	Avg. Net Annual TSS % Removal Estimate	Avg. % Rainfall Volume Treated
45.52	35%	329-5m Ultra	94%	92%

3) EPA SWWM Design Criteria:

Flow (I/s)	Slope	Imperv/Perv Depression Storage	Imperv/Perv Manning's n	Min/Max Infiltration Rate (mm/hr)	Decay Rate	Daily Evaporation Rate
4335	2%	1.6/3.2 mm	0.015/0.25	75/7.5	0.00115	2.54 mm

Design Parameters:

- 1) The unit for this project has been designed to remove a minimum 85% TSS annually for every year on record from a minimum 90 % of the total runoff volume over the period of record. This is based on the requirements defined in the City of Calgary.
- 2) This unit provides removal for small, frequent storm events that represent the majority of annual rainfall volume and pollutant load. Treatment continues for large, infrequent events; however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.
- 3) The peak flows will be conveyed through the unit without re-suspending the previously trapped pollutants. The sediment storage sump is separate from the high flow area.
 - * ETV particle size distribution utilized, or in part, shown on Page 9.

City: Calgary

Project City: Calgary Designation: East Inlet Revision: 0

rainwater. MANAGEMENT

City of Calgary Checklist:

- 7) The unit is designed to operate in free flow conditions but can also handle submerged or backwater conditions. This condition is met.
- 8) The unit will treat a minimum 90 % of the total runoff volume over the period of record. This condition is met.
- 9) The unit has a minimum annual TSS removal rate of 85 % for each and every year. This condition is met.
- 10) Average volume treated = Area x CF x Avg Annual Precipitation x Total Impreviousness x Avg. Vol. Treated from Page 8.

Drainage Area (ha)	Conv Factor	Agv. Annual Percip (mm)	Total Imperviou- sness %	Avg. Vol Treated as per p.8	Avg. Vol Treated (m3)
45.52	10	400	35%	92%	58,363

Average annual sediment removed = Avg. Vol Treated x Avg. Removal Efficiency from Page 8 x Sediment Concentration

Avg. Vol Treated (m3)	Avg. Removal Efficiency as per p.8	Sediment Concentration (kg/m3)	Avg. Annual Sediment Removed (kg)	Bottom Box Length (m)	RWM Models Sump Capacity (kg)	Sump Capacity Condition
58,363	94%	0.444	24,446	5	32,330	Contition Met

11) The allowable treatment flow:

RWM Ultra Model	Box Unit Width (mm)	Max Hyd. Laoding Rate (I/s/m2)	Alowable Treatable Flow (I/s)	Allowable Treatment Flow Condition
329-5m	2440	27	329.4	Condition Met

- 12) Items a and b are covered in the attached tables. Item c is covered in requirement 10 above. These conditions are met.
- 13) A product guide is enclosed. This condition is met.

rainwater. MANAGEMENT

Sizing Summary:

The unit is a hydrodynamic separator that combines screening and enhanced gravity settling to remove floating, neutrally buoyant and non-buoyant solids from stormwater runoff. The non-blocking screen captures 100% of the pollutants equal to the screen aperture size (2400 microns) and larger. All non-buoyant solids are directed to a sump that separates the captured pollutants from the treatment flow path to prevent the larger storm events from re-suspending previously trapped material. The floatable debris and oil/grease are trapped upstream of the baffle for easy removal.

The unit can be installed as a bend structure and can accommodate multiple inlets.

Maintenance is a key to any systems proper long-term effectiveness. The unit allows for easy access without confined space requirements. Rainwater Management is available to train a maintenance crew or to provide regular inspection/maintenance services.

Rainwater Management is happy to provide further information if required.

Kind Regards,

Peter Law P.Eng.

Permit to Practice Rainwater Management Ltd. Permit Number P11426

This report confirms that the above stormwater unit is designed to the manufacturer's specifications to meet the design criteria.

	Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	00	95	100	125	150	200	250	300	330	400	420	440	1219	1998	2777	3556	4335	4335 +	Total Runoff
	1971	2808	1443	2074	1124	1490	1561	2706	1228	697	568	616	690	236	785	563	0	635	966	1408	3553	1922	1269	1748	1034	1147	1323	0	0	0	0	0	0	0	0	33624
	1970	2037	1628	1739	1343	1269	1758	520	1082	1014	756	414	901	246	0	285	0	622	324	359	788	1913	1783	870	920	1133	4033	0	0	7201	4774	0	0	0	0	39710
	1969	2532	2235	2311	2825	2385	1149	1220	1669	1188	2456	2460	901	236	1560	1673	290	938	0	0	3671	1464	4643	2481	0	0	1323	0	0	0	0	0	0	0	0	41612
	1968	1992	1600	1129	1366	993	1168	1330	300	695	748	1237	668	957	1330	2501	297	627	675	353	1945	475	4522	2415	0	0	0	0	0	1847	0	0	0	0	0	31167
ers	1967	1591	736	1169	433	577	1053	536	910	707	571	412	1348	0	0	0	597	1257	0	1060	877	1452	616	785	0	0	1384	0	0	0	0	0	0	0	0	18071
ual Runoff/Year in Cubic Meters	1966	1979	1719	1343	2377	2081	810	2443	1235	863	2282	1842	1332	963	528	557	293	0	0	1061	2687	498	10710	1524	954	0	0	0	0	0	0	0	0	0	0	40083
off/Year in	1965	3409	3760	3245	3095	2278	2291	1754	1531	1023	1145	1228	1326	478	1325	1420	2070	318	674	1412	3753	3797	4811	1558	926	2250	3692	0	0	2123	4905	0	0	0	0	61597
nual Run	1964	2342	2131	2371	2288	1770	346	822	1529	1357	186	1044	654	236	262	1664	883	315	339	351	2459	2028	4337	1686	2076	0	0	0	0	3925	0	0	0	0	0	37403
Ann	1963	1940	1253	1382	1640	1853	1056	1876	1365	1525	1147	1039	1117	0	1035	0	1197	320	334	1072	4013	3392	4529	3836	2063	0	0	0	0	5842	0	0	0	0	0	44826
	1962	1373	1116	787	806	1114	590	522	305	1044	756	1248	218	729	535	555	595	636	0	0	843	1534	2526	890	1013	2243	0	0	0	0	0	0	0	0	0	21977
	1961	1618	1163	912	882	1400	1140	404	1214	512	568	1038	460	266	1051	573	1481	639	0	348	2879	3073	4355	2311	4033	0	2441	1499	0	6036	0	0	0	0	0	43030
	1960	2674	1597	1602	968	1360	1030	1857	1332	691	561	411	889	1208	1301	561	1777	308	326	1400	6049	921	1180	879	0	0	1362	0	0	0	0	0	0	0	0	32244
	Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	125	150	200	250	300	330	400	420	440	1219	1998	2777	3556	4335	4335 +	Total Runoff

Meters
Cubic
rear in
Runoff∕
Inual F

	-	Т	1	1	T	-							-	-						_							-							_	
Elow I/c	10	ם ער	20	25	30	35	40	45	20	55	09	65	02	52	80	58	06	65	100	125	150	200	250	300	330	400	420	440	1219	1998	2777	3556	4335	4335 +	Total
1084	1853	1521	2036	1965	1377	1400	955	1041	1370	1333	1658	1116	0	261	1116	593	622	066	1065	3316	2903	2628	754	0	0	0	0	0	0	0	0	0	0	0	31873
1083	1318	1180	922	912	783	583	939	768	1022	566	1052	673	984	261	272	0	623	341	353	848	1478	3075	762	1074	0	0	0	0	0	0	0	0	0	0	20790
1082	7688	1887	1327	1580	1385	1527	1499	1537	1002	943	208	440	1236	1286	568	300	1888	1007	1064	2797	2961	1836	0	1014	0	4049	0	0	0	0	0	0	0	0	36024
1081	1000	1815	2432	1812	2312	930	2966	1694	1519	1498	1447	883	487	779	836	1188	1251	986	0	4372	1978	5041	7214	3933	0	0	0	0	1699	0	0	0	0	0	52055
1080	0001	1064	1281	1553	1473	1642	1622	1525	507	941	1840	682	1462	515	845	886	1243	0	709	3163	2973	5774	4181	2965	0	0	0	0	0	0	0	0	0	0	42020
1070	1550	1022	1005	867	795	468	667	625	852	375	214	0	482	260	559	0	1239	0	694	1527	1957	1201	2371	984	1145	0	0	0	0	0	0	0	0	0	20859
	3160	2642	1931	2209	2132	2935	954	2475	2377	1693	1251	2681	1975	2119	1399	1182	1263	330	1048	4059	2487	2413	720	0	0	1337	0	0	0	0	0	0	0	0	46771
	7367	2115	1996	1486	2177	1035	1216	2124	681	0	1046	2265	960	787	1383	1196	307	334	344	3690	1501	1875	1624	1958	1111	0	0	1559	0	0	0	0	0	0	37129
1076	JEEB	1854	1996	2270	1683	1048	1358	2120	661	1329	1040	1350	486	254	565	893	631	338	0	1963	2486	6408	2250	0	0	0	0	0	0	0	0	0	0	0	35639
1075	2618 2618	1008	1983	1638	2153	1399	944	1236	846	948	1249	673	491	262	283	1181	642	0	0	1659	1439	0	1596	0	0	1199	1480	0	0	0	0	0	0	0	27826
1074	1806	1106	1694	1228	1286	1195	1333	1345	516	749	1040	0	236	269	0	589	634	0	355	4096	950	2476	1628	1975	0	0	0	0	4473	0	0	0	0	0	31071
1073	7638	2006	1296	1229	1556	1393	939	917	1562	943	1637	679	1667	1048	0	887	1263	995	700	2880	1486	2082	836	0	0	0	0	0	0	0	0	0	0	0	30638
1072	7820	1777	2026	1430	1335	1519	2299	1109	848	738	1422	679	2916	529	552	888	641	966	704	5093	1965	1317	1494	0	1126	5167	0	3102	0	0	0	0	0	0	44493

Meters
Cubic
Year in
Runoff/
Annual

	Flow I/s	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	125	150	200	250	300	330	400	420	440	1219	1998	2777	3556	4335	4335 +	Total Runoff
	1997	2002	1504	1920	1372	1094	1404	4060	1995	1016	940	430	680	1715	1574	1410	1493	645	666	0	4045	3011	1853	0	0	2233	0	0	0	5732	0	0	0	0	0	42792
	1996	3193	3111	2240	1697	2223	1649	829	296	1361	1863	0	230	246	0	823	299	0	325	0	2469	1922	1250	1508	0	0	0	0	0	0	0	0	0	0	0	27532
	1995	2314	2181	2789	1928	1899	1055	1355	2961	340	2100	827	889	1213	1562	558	0	315	0	701	760	499	1406	830	0	0	0	0	0	5550	0	0	0	0	0	34033
	1994	2393	1978	1857	2137	1707	2849	1052	1081	672	756	202	682	495	261	270	0	632	1335	1397	1565	540	296	740	996	0	1353	0	0	1599	0	0	0	0	0	29113
	1993	2640	2093	1727	1686	3978	2369	1309	461	854	1311	422	884	0	520	1113	209	942	327	1041	5909	1505	1980	2501	3876	0	0	0	0	2989	0	0	0	0	0	43041
ic Meters	1992	3208	1648	3174	1528	1737	1061	954	1533	1716	956	1227	1136	483	2572	2221	1175	1590	0	351	2860	3986	3029	778	2999	1161	0	0	0	4163	0	0	0	0	0	47248
Runoff/Year in Cubic Meters	1991	2288	1217	1388	961	1053	470	1364	1540	1020	1132	1028	671	708	525	840	592	627	329	0	3308	3956	4565	1536	1842	1105	0	1442	0	1639	0	0	0	0	0	37148
unoff/Ye	1990	2592	1525	1394	1438	897	1005	1195	1073	1199	1292	402	449	965	780	844	903	941	325	1766	2083	1395	3277	0	3083	1175	0	0	0	0	0	0	0	0	0	31999
Annual R	1989	2633	2593	1485	1629	1494	1292	1225	456	679	763	1246	671	487	779	281	0	624	962	0	745	995	3195	1607	0	0	1207	0	0	0	0	0	0	0	0	27081
	1988	2728	1232	1444	1137	991	1502	512	1382	517	1120	640	894	1695	535	1686	901	1254	1349	702	2469	2042	7848	4916	1868	0	0	0	0	0	0	0	0	0	0	41362
	1987	1810	1277	1001	1139	899	1371	1365	1076	865	1528	1259	1354	707	256	557	1766	320	0	351	4005	1467	2965	1502	925	0	0	0	0	3446	0	0	0	0	0	33211
	1986	1807	1843	1561	1487	2009	2975	2251	1068	1357	387	835	691	975	524	838	878	1556	1010	1058	2106	5352	3828	9094	1028	0	1376	0	0	0	0	0	0	0	0	47895
	1985	2551	1638	1423	1171	1682	692	923	1063	177	734	631	450	720	518	285	298	1240	679	348	1210	3930	2480	3357	2889	1102	0	1465	0	4040	0	0	0	0	0	37698

Meters
Cubic
rear in
lunoff/
nual F

Meters
Cubic
Year in
Runoff/
Annual

TSS Removal

ISS R	emoval	Runoff	Treated
Year	Removal	Year	Treated
1960	95%	1960	96%
1961	91%	1961	77%
1962	93%	1962	100%
1963	94%	1963	87%
1964	95%	1964	90%
1965	94%	1965	83%
1966	95%	1966	100%
1967	95%	1967	92%
1968	95%	1968	94%
1969	95%	1969	97%
1970	92%	1970	60%
1971	94%	1971	96%
1972	92%	1972	81%
1973	96%	1973	100%
1974	95%	1974	86%
1975	95%	1975	90%
1976	95%	1976	100%
1970	94%	1970	96%
1978	96%	1978	97%
1979	94%	1979	100%
1979	94%	1979	100%
1980	94%	1981	97%
1981	94%	1982	89%
1982	94%	1983	100%
	95%		100%
1984		1984	
1985	92%	1985	85%
1986	93%	1986	97%
1987	95%	1987	90%
1988	94%	1988	100%
1989	95%	1989	96%
1990	94%	1990	100%
1991	93%	1991	92%
1992	95%	1992	91%
1993	95%	1993	93%
1994	96%	1994	90%
1995	97%	1995	84%
1996	97%	1996	100%
1997	96%	1997	87%
1998	93%	1998	95%
1999	94%	1999	94%
2000	95%	2000	89%
2001	95%	2001	89%
2002	94%	2002	89%
2003	94%	2003	100%
2004	93%	2004	95%
2005	92%	2005	79%
2006	94%	2006	82%
2007	94%	2007	76%
2008	95%	2008	93%
2009	94%	2009	88%
Average	94%	Average	92%

	Treated
Year	Treated
1960	96%
1961	77%
1962	100%
1963	87%
1964	90%
1965	83%
1966	100%
1967	92%
1968	94%
1969	97%
1970	60%
1971	96%
1972	81%
1972	100%
1973	86%
1974	90%
1975	100%
1976	96%
1978	97%
1979	100%
1980	100%
1981	97%
1982	89%
1983	100%
1984	100%
1985	85%
1986	97%
1987	90%
1988	100%
1989	96%
1990	100%
1991	92%
1992	91%
1993	93%
1994	90%
1995	84%
1996	100%
1997	87%
1998	95%
1999	94%
2000	89%
2001	89%
2002	89%
2003	100%
2004	95%
2005	79%
2006	82%
2007	76%
2008	93%
2009	88%
Average	92%
	01/0

ETV Particle Size Distribution:

Particle Size Fraction (um)	Percent
500-1000	5
250-500	5
150-250	15
100-150	15
75-100	10
50-75	5
20-50	10
8-20	15
5-8	10
2-5	5
<2	5

P6400

July 19, 2023

Rocky View County Capital and Engineering Services 262075 Rocky View Point Rocky View County, AB T4A 0X2

Attention: Mr. Milan Patel, P.Eng. Municipal Engineer

Re: Ascension - Stormwater

LGN Consulting Engineering Ltd. (LGN) was requested, to analyse the existing Tuscany Storm Trunk from Pond 34WPA to the Bow River outfall B115A, under the following conditions:

- 1. Existing conditions, flows from Tuscany and Haskayne.
- 2. Existing conditions plus flows from the Watermark ponds and Ascension.
- 3. Existing conditions plus Ascension flows only.

The flows from the different contributing subcatchments are:

Subcatchment	Flow (m ³ /s)
Tuscany	5.57
Haskayne	0.75
Watermark	0.564
Ascension	0.094

Table 1 – Land Use Characteristics

The first analysis was provided by the City of Calgary and was used as the base for the other two analysis. Profiles showing the High Water Level in the storm trunk are attached.

Conclusion

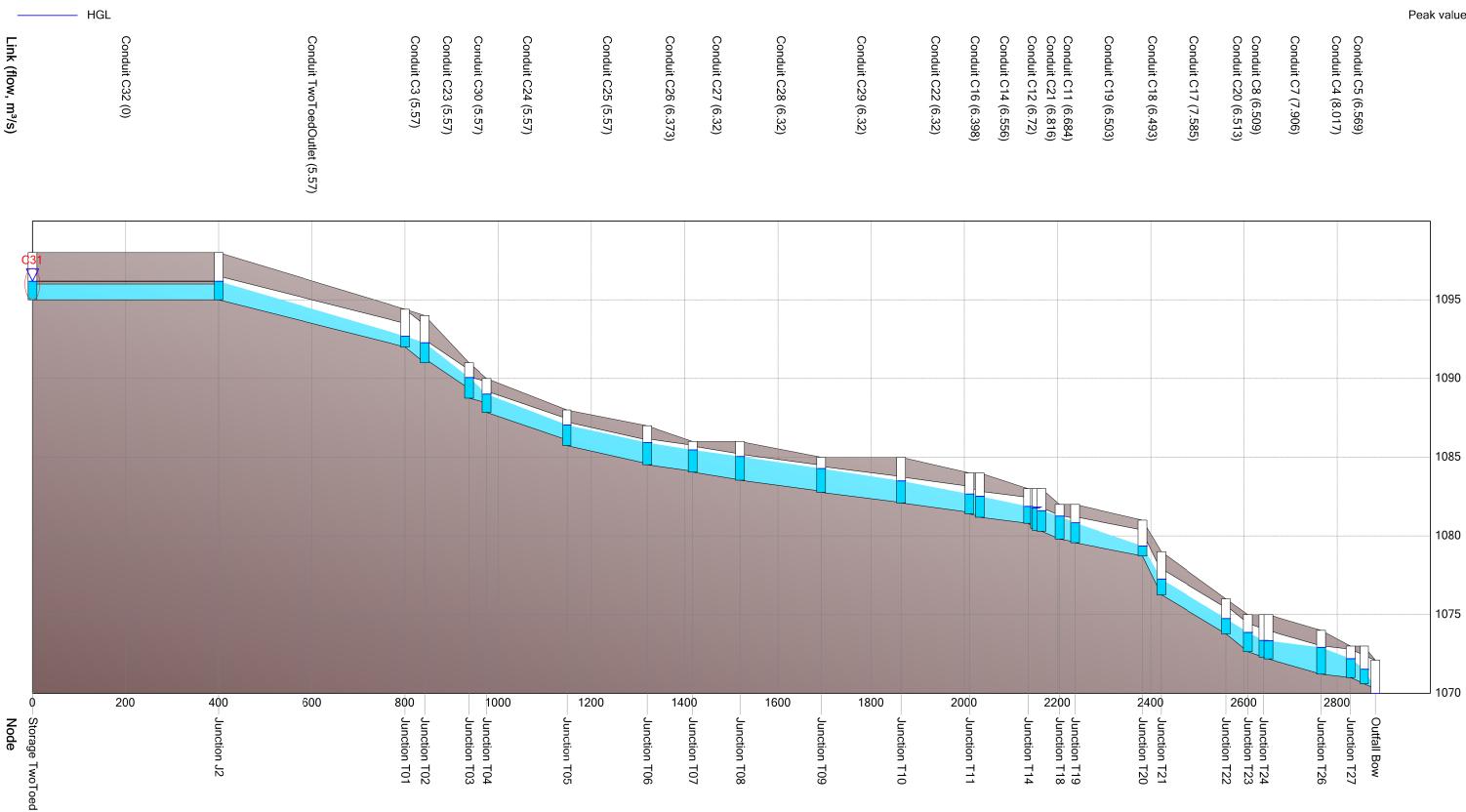
• The existing Tuscany Storm Trunk can accommodate the flows from Ascension only, without surcharging.

Should you require additional information or clarification to the above information, please do not hesitate to contact me.

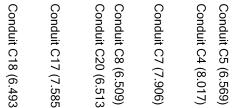
Yours sincerely,

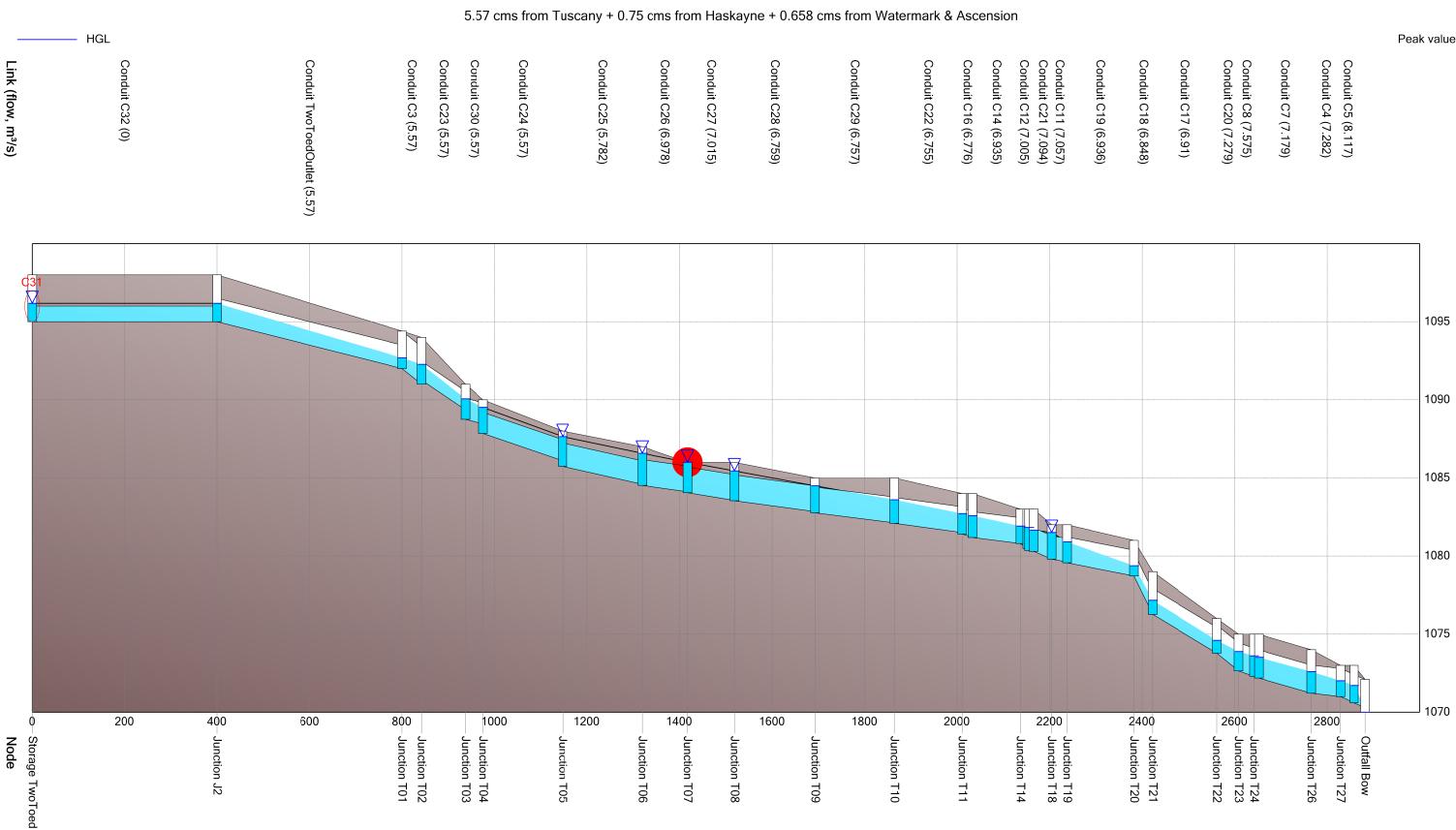
LGN Consulting Engineering Ltd.

Luis G. Narvaez, B.Sc., P.Eng. Senior Stormwater Engineer



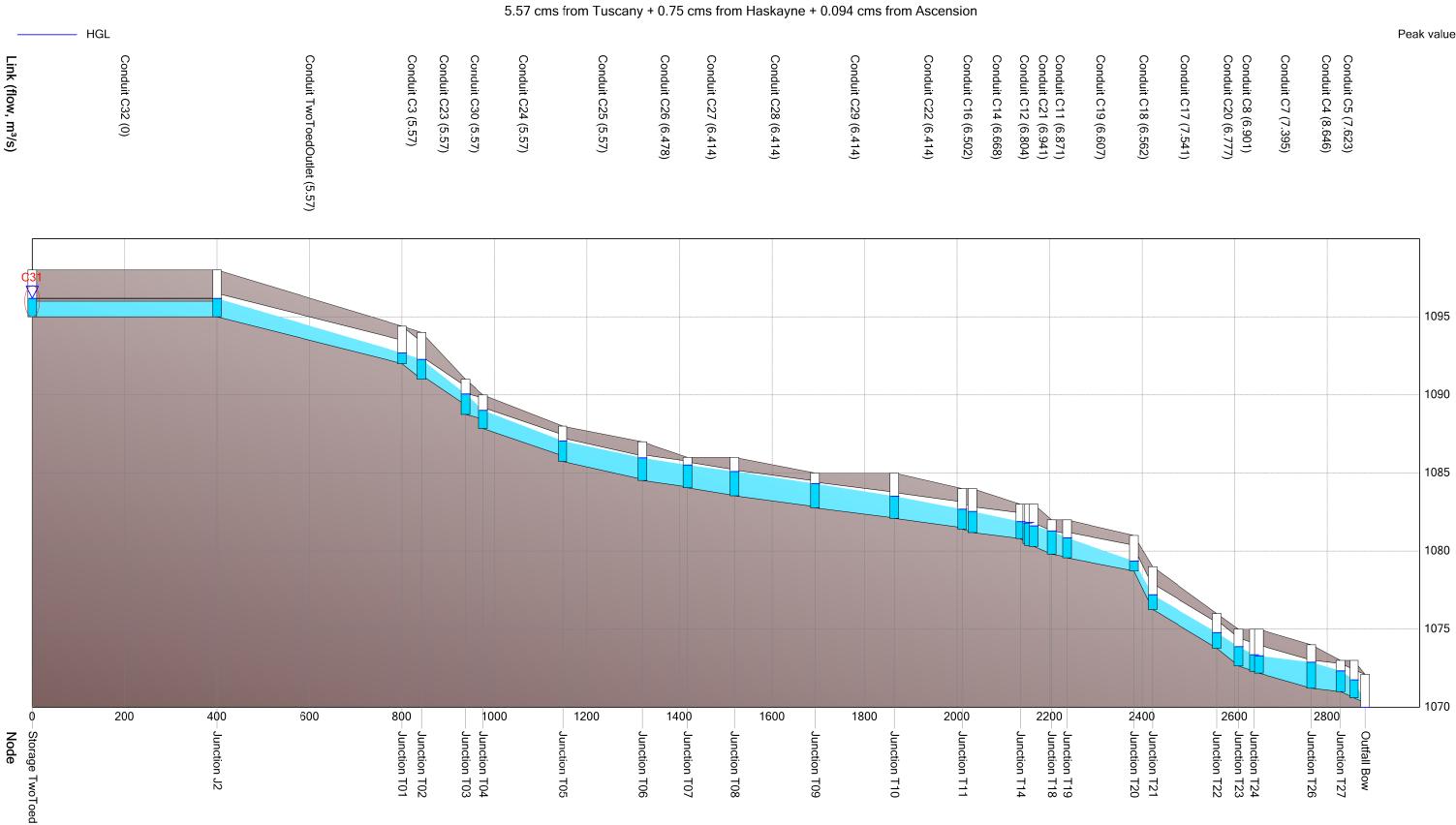
APPENDIX A



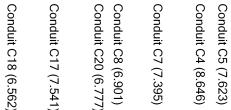

HGL Profile from Pond 34WPA to Bow River Outfall B115A

5.57 cms from Tuscany & 0.75 cms from Haskayne

Peak values



HGL Profile from Pond 34WPA to Bow River Outfall B115A


Peak values

HGL Profile from Pond 34WPA to Bow River Outfall B115A

Peak values

October 25, 2023

Rocky View County Capital and Engineering Services 262075 Rocky View Point Rocky View County, AB T4A 0X2

Attention: Mr. Milan Patel, P.Eng. Municipal Engineer

Re: Ascension – Offsite Infrastructure

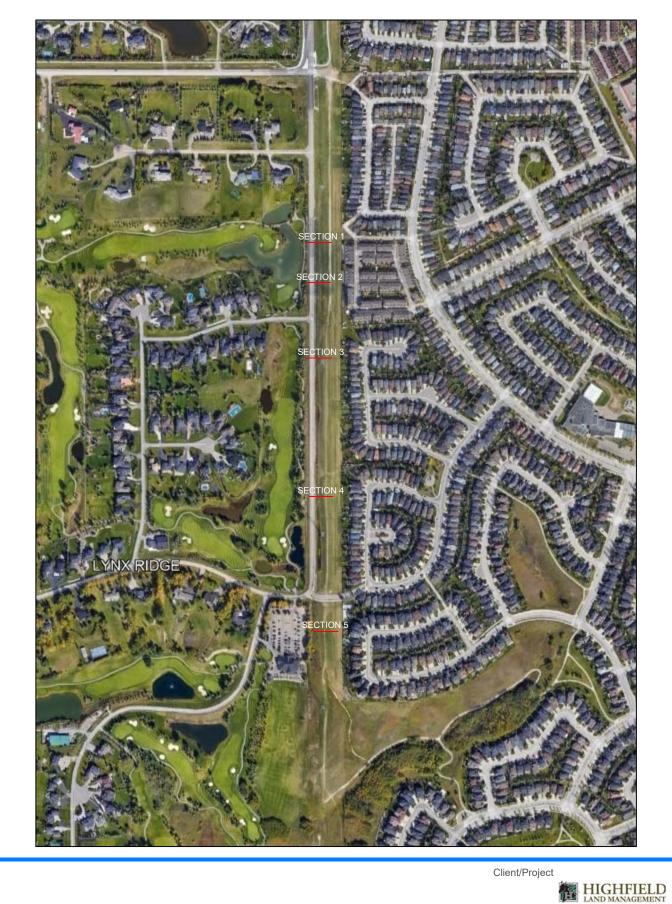
Following is the offsite infrastructure to service the convey the Ascension Stormwater runoff from the Ascension Pond to the Bow River outfall B115:

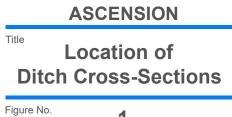
- 1. Ascension wetland to Blueridge wetland existing culvert, to be located and replaced or twinned if necessary.
- Blueridge wetland to Watermark cascading ponds new overland ditch along west side of Blueridge View to be designed in conjunction with Ascension pond and offsite utility extensions.
- 3. North end of cascading ponds to Watermark Pond C existing overland system, no upgrades required.
- 4. Watermark Pond C change the ICD to accommodate flow-through flows from Ascension will be required; preliminary design indicates that the ICD needs to be changed from 500mm x 800mm to 530mm x 830mm.
- 5. Pipes connecting Watermark Pond C and Watermark Pond D no upgrade required.
- 6. Watermark Pond D change the ICD to accommodate flow-through flows from Ascension will be required; preliminary design indicates that the ICD needs to be changed from 475mm Ø to 528mm Ø.
- 7. Watermark Pond D to 750 mm Storm trunk along Nose Hill Drive –Utilizing a City of Calgary topographical map, we generated key cross-sections of the existing ditch and flow capacity at each section was calculated; cross-sections location plan and calculations are attached in Appendix A. The calculations indicate that the lowest flow capacity is at Section 2, 3.39 m³/s. The estimated flow from Watermark and Ascension combined is 0.658 m³/s; this indicates that no upgrades is expected to be required on the existing ditch. However, a survey of the entire ditch is recommended to confirm that no upgrades are required.
- 8. Diversion chamber to direct Ascension flows to the Tuscany storm trunk to be designed in conjunction with the Ascension pond detail design.

9. Diversion chamber to Bow River outfall B115A (100 m downstream of water intake RAW2) – existing storm trunk has been analysed with the additional 94 L/s from Ascension and this pipe system does not need any upgrades.

Should you require additional information or clarification to the above information, please do not hesitate to contact me.

Yours sincerely,


Luis G. Narvaez, B.Sc., P.Eng. Senior Stormwater Engineer


APPENDIX A

Scale: N	TS
----------	----

Project Description	
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Channel Slope	0.51 %
Normal Depth	0.50 m
Section Definitions	

Station (m)	Elevation (m)
0+00	1156.50
0+08	1156.50
0+11	1156.00
0+18	1156.00
0+20	1156.50
0+22	1157.00
0+23	1157.50
0+24	1158.00
0+26	1158.50

Roughness Segment Definitions

Start Station	En	ding Station		Roughness Coefficient	
(0+00, 11 (0+11, 11	,	,	1156.00) 1158.50)		0.016 0.050
Options					
Current Roughness Weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method Results					
Discharge Elevation Range	1156.00 to 1158.50 m		m³/s		
Flow Area		4.77	m²		

Bentley Systems, Inc. Haestad Methods SoBatitile CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

2023-10-20 10:14:57 AM

	Worksheet for Irregular	Section - 1
Results		
Wetted Perimeter	12.10	m
Hydraulic Radius	0.39	m
Top Width	11.99	m
Normal Depth	0.50	m
Critical Depth	0.31	m
Critical Slope	0.02972	m/m
Velocity	0.88	m/s
Velocity Head	0.04	m
Specific Energy	0.54	m
Froude Number	0.44	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	0.50	m
Critical Depth	0.31	m
Channel Slope	0.51	%
Critical Slope	0.02972	m/m

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	1.30 %	
Normal Depth	0.50 m	
Section Definitions		

Station (m)		Elevation (m)	
	0+00		1156.00
	0+12		1156.00
	0+14		1155.50
	0+18		1155.50
	0+20		1156.00
	0+22		1156.50

Roughness Segment Definitions

Start Station		Ending Station		Roughness Coefficient	
(0+00, 11	56.00)	(0+12,	1156.00)		0.016
(0+12, 11	56.00)	(0+22,	1156.50)		0.050
Options					
Current Roughness Weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		3.39	m³/s		
Elevation Range	1155.50 to 1156.50 n	n			
Flow Area		2.89	m²		
Wetted Perimeter		7.84	m		
Hydraulic Radius		0.37	m		
Top Width		7.71	m		

Bentley Systems, Inc. Haestad Methods SoBdittle@EnterMaster V8i (SELECTseries 1) [08.11.01.03]

2023-10-20 10:15:46 AM

Worksheet for Irregular Section - 2				
Results				
Normal Depth		0.50	m	
Critical Depth		0.38	m	
Critical Slope		0.03753	m/m	
Velocity		1.17	m/s	
Velocity Head		0.07	m	
Specific Energy		0.57	m	
Froude Number		0.61		
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00	m	
Length		0.00	m	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	m	
Profile Description				
Profile Headloss		0.00	m	
Downstream Velocity		Infinity	m/s	
Upstream Velocity		Infinity	m/s	
Normal Depth		0.50	m	
Critical Depth		0.38	m	
Channel Slope		1.30	%	
Critical Slope		0.03753	m/m	

Project Description	
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Channel Slope	0.83 %
Normal Depth	0.50 m
Section Definitions	

Station (m)		Elevation (m)	
	0+00		1155.50
	0+11		1155.50
	0+13		1155.00
	0+19		1155.00
	0+22		1155.50
	0+24		1156.00

Roughness Segment Definitions

Start Station	Er	nding Station		Roughness Coefficient	
(0+00, 115	5 50)	(0+11	1155.50)		0.016
(0+00, 115)			1156.00)		0.010
(0,11,110)		(0*21,	1100.007		0.000
Options					
Current Roughness Weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge		4.01	m³/s		
Elevation Range	1155.00 to 1156.00 r	n			
Flow Area		4.17	m²		
Wetted Perimeter		10.86	m		
Hydraulic Radius		0.38	m		
Top Width		10.75	m		

Bentley Systems, Inc. Haestad Methods SoBditdle CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

2023-10-20 10:16:06 AM

	Worksheet for	Irregular	Section - 3
Results			
Normal Depth		0.50	m
Critical Depth		0.33	m
Critical Slope		0.03829	m/m
Velocity		0.96	m/s
Velocity Head		0.05	m
Specific Energy		0.55	m
Froude Number		0.49	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	m
Length		0.00	m
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	m
Profile Description			
Profile Headloss		0.00	m
Downstream Velocity		Infinity	m/s
Upstream Velocity		Infinity	m/s
Normal Depth		0.50	m
Critical Depth		0.33	m
Channel Slope		0.83	%
Critical Slope		0.03829	m/m

Section Definitions

Station (m)	Elevation (m)
0+00	1154.00
0+09	1154.00
0+11	1153.50
0+14	1153.00
0+15	1153.00
0+19	1153.50
0+20	1154.00
0+21	1154.50
0+23	1155.00
0+26	1155.50
0+31	1155.50

Roughness Segment Definitions

Start Station		Ending Station	Roughness Coefficient
(0+00, 115	54.00)	(0+09, 1154.00)	0.016
(0+09, 115	(0+09, 1154.00)		0.050
Options			
Current Roughness Weighted Method	Pavlovskii's Metho	d	
Open Channel Weighting Method	Pavlovskii's Metho	d	
Closed Channel Weighting Method	Pavlovskii's Metho	d	
Results			
Discharge		10.58 m³/s	

Bentley Systems, Inc. Haestad Methods SoBditdle CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

2023-10-20 10:16:43 AM 27 Siemons Cor

	Worksheet for Irregular	Section - 4
Results		
Elevation Range	1153.00 to 1155.50 m	
Flow Area	6.64	m²
Wetted Perimeter	11.21	m
Hydraulic Radius	0.59	m
Top Width	10.99	m
Normal Depth	1.00	m
Critical Depth	0.82	m
Critical Slope	0.03170	m/m
Velocity	1.59	m/s
Velocity Head	0.13	m
Specific Energy	1.13	m
Froude Number	0.66	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s
Normal Depth	1.00	m
Critical Depth	0.82	m
Channel Slope	1.28	%
Critical Slope	0.03170	m/m

Project Description	
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Channel Slope	2.49 %
Normal Depth	1.00 m
Section Definitions	

Station (m)	Elevation (m)
0+00	1152.50
0+03	1153.00
0+06	1153.00
0+08	1152.50
0+10	1152.00
0+11	1152.00
0+12	1152.50
0+26	1153.00
0+32	1153.00

Roughness Segment Definitions

Start Station	E	Ending Station		Roughness Coefficient	
(0+00, 11	52.50)	(0+32,	1153.00)		0.050
Options					
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Methoo Pavlovskii's Methoo Pavlovskii's Methoo	1			
Results					
Discharge Elevation Range	1152.00 to 1153.00	12.52 m	m³/s		
Flow Area		7.99	m²		
Wetted Perimeter		22.82	m		

Bentley Systems, Inc. Haestad Methods SoBdittle@EnderMaster V8i (SELECTseries 1) [08.11.01.03]

2023-10-20 10:17:04 AM

Results Hydraulic Radius 0.3	5 m
Hydraulic Radius 0.3	5 m
	5 11
Top Width 22.0	1 m
Normal Depth 1.0	0 m
Critical Depth 0.9	5 m
Critical Slope 0.0368	4 m/m
Velocity 1.5	7 m/s
Velocity Head 0.1	3 m
Specific Energy 1.1	3 m
Froude Number 0.8	3
Flow Type Subcritical	
GVF Input Data	
Downstream Depth 0.0	0 m
Length 0.0	0 m
Number Of Steps	0
GVF Output Data	
Upstream Depth 0.0	0 m
Profile Description	
Profile Headloss 0.0	0 m
Downstream Velocity Infini	y m/s
Upstream Velocity Infini	y m/s
Normal Depth 1.0	0 m
Critical Depth 0.9	5 m
Channel Slope 2.4	9 %
Critical Slope 0.0368	4 m/m

P6400

January 10, 2024

Rocky View County Capital and Engineering Services 262075 Rocky View Point Rocky View County, AB T4A 0X2

Attention: Mr. Milan Patel, P.Eng. Municipal Engineer

Reference: Ascension – Watermark Infrastructure

Following is our response to the Watermark Home Owners Association comments. In italic letters are the comments and in blue our response:

 Whether reliance on overland surface flow from Ascension through Blueridge to the east cascading ponds in Watermark and from the outlet of Pond D down to the Bow River is a viable longer-term solution for stormwater management, as opposed to installation of underground infrastructure which would be the norm for stormwater handling in most communities of this nature?

Storm runoff from most of the communities in Rocky View County are handle by an overland storm system. It is a proven infrastructure and in this case is a viable longerterm solution with a minimum impact in the existing Watermark storm system. Because it is a flow through situation, no storage is required within Watermark; therefore, the ponds don't need change.

• Whether the proposed installation of oil/grit separators located at Ascension will provide the necessary assurances regarding the water quality of discharge leaving Ascension and ultimately entering the ponds in Watermark?

The propose water quality control for Ascension is a treatment train composed of structural and non-structural components. They go from source control to natural controls, they are: oil/grit separators at the multi-family and commercial sites, oil/grit separators prior to runoff discharge into the storm pond, sedimentation forebay and constructed wetland. This proposed treatment train system will exceed Alberta Environment requirements.

• Who will be responsible for ongoing regular monitoring of water quality of the discharge leaving Ascension and ensuring that water quality requirements are met or exceeded on an ongoing basis?

Monitoring will be done in accordance with Provincial requirements and will be the responsibility of the pond owner, which will ultimately be Rocky View County.

• What is the plan to maintain the integrity of the ditches in Blueridge through which the Ascension discharge is being surface transported over the longer term?

The proposal is to utilize the existing ditch and modify in specific locations as required, along the west side of Blueridge View, this will convey Ascension flows from the existing wetland in Blueridge to the top of the cascading ponds in Watermark.

Please note that the pre-development 1:100 peak runoff is 253 L/s compared to 94 L/s for post-development. Therefore, impacts to downstream stormwater conveyance routes are not expected to be negatively impacted.

 What assurances can be provided that the small culvert at the base of Blueridge View that runs under the Watermark pathway system before entering the cascading ponds system has enough capacity to handle the projected volumes during a major storm event (if not, there is risk of damage to the Watermark pathway system and landscaping, both of which are the maintenance responsibility of the Watermark HOA)?

During detail design, the capacity of all ditches and culverts will be surveyed and analysed to ensure the appropriate operation and, if necessary replaced with an appropriate size.

• What analysis has been done to provide assurance that peak water flows are in fact manageable, particularly as they relate to the eastern cascading ponds - acknowledging that there is an in/out balance on the overall system, there is likely to be a temporal/transient effect at the cascading ponds that are in very close proximity to the back yards of the residences in Watermark bordering the eastern cascading ponds (our experience is that even a relatively modest increase in the flow entering the cascading pond system can appreciably increase water levels in these relatively small ponds)?

Because of the cascading nature of these ponds, the water levels are self-controlled and the additional 94 L/s flow from Ascension should approximately produce an additional 5 cm head during a peak flow, ignoring the pre-development flow that would normally be entering into the pond. These will also be assessed during detail design.

 Given the importance of the aesthetic value of the stormwater ponds to residents of Watermark and the ongoing challenges associated with managing weed and algae growth in these ponds during the Summer months, what analysis has been done and what assurances can be provided to ensure that this additional run-off and related water quality impacts does not exacerbate these issues in the eastern cascades and in Ponds C and D (for example, increased concentrations of fertilizer associated with the run-off)?

Post development runoff is expected to exceed the quality of pre-development runoff.

• In addition to the aesthetic impacts arising from increased run-off into these ponds, have potential functional issues (such as increased turbidity levels) been considered in the analysis conducted to date?

Based on the proposed water quality treatment train, flows from Ascension should not increase turbidity levels in the existing ponds.

• Is the Ascension developer prepared to make an ongoing financial contribution toward maintaining the water quality in the stormwater ponds in Watermark and, if not, is the County prepared to require such a commitment as a condition of approval?

As described above, since there is no negative impact to the water quality within Watermark due to the Ascension runoff, no financial contribution is warranted.

Should you require additional information or clarification to the above information, please do not hesitate to contact me.

Yours sincerely,

LGN Consulting Engineering Ltd.

Luis G. Narvaez, B.Sc., P.Eng. Senior Stormwater Engineer

